

Page © Copyright IBM Corp. 2005

IBM Java JCE FIPS 140-2 Cryptographic Module

Security Policy

IBM JAVA JCE FIPS 140-2 Cryptographic
Module

July 2005

Revision: 1.5

 Status: Final

1.5 Edition (July 2005)
This edition applies to the 1.5 Edition of the IBMJCEFIPS – Security Policy and to all subsequent versions until otherwise
indicated in new editions.

© Copyright International Business Machines Corporation 2005.
All rights reserved. This document may be freely reproduced and distributes in its entirety and without modification.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems in the US
and other countries

© Copyright IBM Corp. 2005 Page 2 of 39

Table of Contents

Introduction..3
Operation of the Cryptographic Module..4
Changes from Version 1.1 to 1.2...5
Cryptographic Module Specification...5
Cryptographic Module Interfaces..8
Cryptographic Module Services..9

Self Test...9
Data Encryption/Decryption and Hashing (Digest)...10
Key Generation..11
Key Security..12
Signature..12
Secret Key Factory...13
KeyFactory...13

Cryptographic Module Roles...14
Cryptographic Officer role...14
Cryptographic User role...14

Cryptographic Module Key Management...14
Key Generation..15
Key Storage..15
Key Protection...15
Key Zeroization...15

Cryptographic Module Self-Tests..16
User Guidance..16
Cryptographic Module Operating system environment...18

Framework...18
Single user access (operating system requirements)..19
Java object model...19
Operating system restriction..20

Mitigation of other attacks...20
Appendix A: Function List..21
Notices...38

© Copyright IBM Corp. 2005 Page 3 of 39

Introduction

The IBM® Java® JCE (Java Cryptographic Extension) FIPS 140-2 Cryptographic
Module (Version 1.2) for Multi-platforms is a scalable, multi-purpose
cryptographic module that supports FIPS approved cryptographic operations via
the Java2 Application Programming Interfaces (APIs). The IBM Java JCE FIPS
140-2 Cryptographic Module (hereafter referred to as IBMJCEFIPS) comprises
the following Federal Information Processing Standards (FIPS) 140-2 [Level 1]
compliant components:

• IBMJCEFIPS.jar for Solaris®, Windows®, AIX®, z/OS®, AS/400®, Linux®
(Red Hat and SuSE®)

In order to meet the requirements set forth in the FIPS publication 140-2, the
encryption algorithms utilized by the IBMJCEFIPS provider are isolated into the
IBMJCEFIPS provider cryptographic module (hereafter referred to as
cryptographic module), which is accessed by the product code via the Java JCE
framework APIs. As the IBMJCEFIPS provider utilizes the cryptographic module
in an approved manner, the product complies with the FIPS 140-2 requirements
when properly configured.

This document focuses on the features and security policy provided by the
cryptographic module, and describes how the module is designed to meet FIPS
140-2 compliance.

© Copyright IBM Corp. 2005 Page 4 of 39

Operation of the Cryptographic Module

The cryptographic module must be utilized in a secure manner, as described
herein, to maintain FIPS 140-2 compliance. It is the application and application
administrator’s responsibility to understand and deploy the proper configuration
for compliance.

The module is available as a software module on multiple platforms. The
platforms tested are outlined in the Cryptographic Module Specification section of
this document. The module must be used in one of the specified environments.

An application utilizes the module through the interfaces specified in the
Cryptographic Module Interfaces section of this document. A list of the basic
services provided through these interfaces may be found in the Cryptographic
Module Services section of this document. A complete list of all services and
details on their usage can be found in the IBM Java JCE FIPS (IBMJCEFIPS)
Cryptographic Module API Javadoc.

The module provides for two operator roles:

• Crypto Officer

• User

There is no maintenance role in this cryptographic module.

An application must use the IBMJCEFIPS provider to enable the use of
appropriate cryptographic functions in a FIPS approved manner. The application
calling the IBMJCEFIPS provider must understand the roles of the APIs, Crypto
Officer vs. User. The Cryptographic Module Roles section of this document
details the APIs that apply to each role. In order to use the module in FIPS mode
the User must ensure that only FIPS Approved cryptographic algorithms are
being invoked and/or algorithms are used in an approved manner.

The module can provide for protection of sensitive data, such as keys or
cryptographic contexts. Information on key protection is outlined in the
Cryptographic Module Key Management section. When the module is initialized,
it validates its own integrity, and verifies the algorithms are functioning correctly.
The Cryptographic Module Self-Tests section details the internal tests performed
by the module.

© Copyright IBM Corp. 2005 Page 5 of 39

The module’s physical security relies on the physical security of the computer.
Steps to deploy and maintain this secure environment are outlined in the User
Guidance section of this document.

Changes from Version 1.1 to 1.2

The following was added to the 1.2 version of IBMJCEFIPS:

• The following hash algorithms have been added: SHA-256, SHA-384 and
SHA-512.

• The non-approved MD5 algorithm was added for use by applications that
want to implement the TLS protocol.

• Signature algorithms named DSAforSSL and RSAforSSL that create and
verify signatures but require the application to hash the data before it is
passed into these algorithms. The RSAforSSL does RSA blinding to help
protect RSA private keys. Both these signature algorithms are non-FIPS
Approved.

• New Cipher algorithm called RSAforSSL which does RSA blinding to
protect RSA private keys. This is equal to doing RSA\SSL\PKCS1Padding
using the RSA cipher algorithm name. RSAforSSL can only be used for
key wrapping/unwrapping in a FIPS mode.

• Added a SecureRandom alias called FIPSPRNG.

• DES algorithm was removed from the module considering that NIST would
be phasing DES out soon.

• The TDCP class was added. This class creates a TDES cipher object with
CBC mode and no padding using the underlying TDES cipher for actual
encryption/decryption.

Cryptographic Module Specification

The cryptographic module is a software module, implemented as a Java archive
(JAR). The software module is accessible from Java language programs through
an application program interface (API). Some of the available API functions are
listed below in the Cryptographic Module Services section. Usage guidelines and
details of the full API function set are available in the IBM Java JCE FIPS
(IBMJCEFIPS) Cryptographic Module API Javadoc.

The module is validated to the following FIPS 140-2 defined levels:

Overall Security Level 1

© Copyright IBM Corp. 2005 Page 6 of 39

Cryptographic Module
Specification

Security Level 1

Cryptographic Module
Ports and Interfaces

Security Level 1

Roles, Services, and
Authentication

Security Level 1

Finite State Model Security Level 1
Physical Security Security Level 1
Operational
Environment

Security Level 1

Cryptographic Key
Management

Security Level 1

EMI/EMC Security Level 1
Self-Tests Security Level 1
Design Assurance Security Level 1
Mitigation of Other
Attacks

Security Level 1

© Copyright IBM Corp. 2005 Page 7 of 39

As outlined in section G.5 of the Implementation Guidance for FIPS 140-2, the
module maintains its compliance on other operating systems, provided:

• The GPC uses the specified single user operating system/mode specified
on the validation certificate, or another compatible single user operating
system, and

• The source code of the software cryptographic module does not require
modification prior to recompilation to allow porting to another compatible
single user operating system.

The IBMJCEFIPS provider was tested on a machine running Microsoft Windows
XP Professional operating system in single-user mode with JVM 1.4.2. The
software module maintains compliance when running on the Microsoft Windows
95,  Microsoft Windows 98, Microsoft Windows Me, Microsoft Windows NT,
Microsoft Windows 2000, and Microsoft Windows XP operating systems, as
well as, JVMs at the 5.x level, 1.4.x level and 1.3.1 level on those operating
systems.

Since, at FIPS 140-2 Security level 1 the validation is independent of the
Operating System, this validation is also applicable to AIX, Solaris, HP, Red Hat
Linux, SuSE Linux, z/OS and IBM Operating System/400.

The module supports the following approved algorithms:

Type Algorithm Specification

Symmetric Cipher AES (ECB, CBC, OFB and
CFB modes)

FIPS 197

 Triple DES (ECB, CBC,
OFB and CFB modes)

FIPS 46-3

Message Digest SHA1

SHA-256

SHA-384

SHA-512

HMAC–SHA-1

FIPS 180-2

FIPS 198a

Random Number
Generation

FIPS 186-2 Appendix 3.1 FIPS 186-2

© Copyright IBM Corp. 2005 Page 8 of 39

Digital Signature DSA (512 – 1024) FIPS 186-2

Digital Signature RSA (1024 – 2048) PKCS#1 v1.5

Random Number
Generation

FIPS 186-2 (Appendix 3.1)
(SHA-1 based)

FIPS 186-2

In addition, the module supports the following non-approved algorithms:

Type Algorithm Specification

Random Number
Generation

Universal Software Based
Random Number Generator

Available upon request from
IBM. Patented by IBM, EC
Pat. No. EP1081591A2, U.S.
pat. Pend.

Message Digest MD5 RCF 1321 (Allowed for use
within the TLS protocol).

Asymmetric
Cipher

RSA PKCS #1 with and without
blinding (Allowed in the
Approved mode for key
transport)

Key Agreement Diffie-Hellman (256 –1024) PKCS #3 (Allowed in
Approved mode)

Digital Signature DSAforSSL Allowed for use within the
TLS protocol

Digital Signature RSAforSSL Allowed for use within the
TLS protocol

Cryptographic Module Interfaces

The cryptographic physical boundary is defined at the perimeter of the computer
system enclosure on which the cryptographic module is to be executed, and
includes all the hardware components within the enclosure. The cryptographic
module interfaces with the Central Processing Unit (CPU) of the respective
platform. The RAM and hard disk found on the computer are memory devices
that store and execute the cryptographic module and its data.

The cryptographic module is classified as a “multi-chip standalone module” for
FIPS 140-2 purposes. Thus, the module’s physical interfaces consist of those
found as part of the computer’s hardware, such as the keyboard, mouse, disk

© Copyright IBM Corp. 2005 Page 9 of 39

drive, CD drive, network adapters, serial and USB ports, monitor, speakers, etc.
The module’s logical interface is provided through the documented API.

Each of the FIPS 140-2 defined logical interfaces are implemented as follows:

• Data Input Interface – variables passed in with the API function calls

• Data Output Interface – variables passed back with the API function calls

• Control Input Interface – the API function calls exported from the module

• Status Output Interface – return values and error exceptions provided with
the API method calls

Cryptographic Module Services

The module services are accessible from Java language programs through an
Application Program Interface (API). The application will be required to call the
IBMJCEFIPS provider (as opposed to another JCE provider) through the normal
Java 2 mechanisms such as specifically adding the provider name to the
getInstance call as part of the instantiation of a cryptographic object or by placing
the IBMJCEFIPS provider higher in the provider list and allowing the JVM to
select the first provider that has the requested cryptographic capability. Usage
guidelines and details of the API function are available in the IBM Java JCE FIPS
(IBMJCEFIPS) Cryptographic Module API Javadoc.

The following is a high level description of the basic capabilities available in the
cryptographic module (all services are for the user role unless otherwise noted).
This is intended to outline the basic services available in the cryptographic
module to allow a determination as to whether these services will adequately
address the security needs of an application. Usage guidelines and details of all
of the API functions are available in the IBM Java JCE FIPS (IBMJCEFIPS)
Cryptographic Module API Javadoc.

Self Test
This section describes some of the capabilities that are available as they relate to
the self test the cryptographic module performs to validate its own integrity and to
verify the algorithms are functionally correct.

© Copyright IBM Corp. 2005 Page 10 of 39

Services Description

IsSelfTestInProgress Identifies if a self test is currently in progress.
Call is based on a SelfTest object returned from
the getSelfTest call.

GetSelfTestFailure Returns the exception associated with the self
test failure or null if no failure was encountered.
Call is based on a SelfTest object returned from
the getSelfTest call.

RunSelfTest Performs the known answer self tests. Call is
based on a SelfTest object returned from the
getSelfTest call. This is a Cryptographic
Officer role, call.

IsFipsRunnable Identifies if the crypto module is runnable, has
completed self test with no errors, and is in
“Ready” state. Call is based on a SelfTest
object returned from the getSelfTest call.

IsFipsCertified Identifies if the cryptographic module is FIPS
140-2 validated. Call is based on a provider
object.

GetFipsLevel Returns the FIPS 140-2 validation level of the
cryptographic module. Call is based on a
provider object.

GetSelfTest Returns a SelfTest object that can be used to
execute any of the SelfTest class methods.
Call is based on a provider object.

IsFipsApproved Identifies if the cryptographic operation is FIPS
140-2 validated. Call is based on a
cryptographic object.

Data Encryption/Decryption and Hashing (Digest)
This section describes some of the capabilities that are available as they relate to
encryption/decryption (Cipher) of data and digesting or hashing (MessageDigest)
of data.

Services Description

getInstance

Creates a cryptographic object
(Cipher/MessageDigest) for a selected
algorithm. Also used to select the

© Copyright IBM Corp. 2005 Page 11 of 39

Cipher.getInstance

MessageDigest.getInstance

cryptographic provider to be used by that
object.

Cipher allows for 3DES, and AES algorithms
with various cipher modes and paddings.
MessageDigest allows for SHA-1, SHA-256,
SHA-384, SHA-512, MD5 hashing.

Init

Cipher.init

MessageDigest.init

Intitializes the cryptographic object for use.
This includes the mode (encryption or
decryption) and the cryptographic key. This
call is based on a cryptographic object.

Update

Cipher.update

MessageDigest.update

Updates the cryptographic object with data to
be encrypted/decrypted. This call is based on
a cryptographic object.

doFinal

Cipher.doFinal

MessageDigest.doFinal

Updates the cryptographic object with data to
be encrypted/decrypted and returns the data
in encrypted or decrypted form (based on the
init). This call is based on a cryptographic
object

Key Generation
This section describes some of the capabilities that are available as they relate to
keys.

Services Descritption

getInstance

KeyGenerator.getInstance

Creates a cryptographic object (KeyGenerator)
for a selected algorithm. Also used to select
the cryptographic provider to be used by that
object.

Init

Intitializes the cryptographic object for use.
This call is based on a cryptographic object.

GenerateKey Generates a cryptographic key. This call is
based on a cryptographic object.

Services Description

© Copyright IBM Corp. 2005 Page 12 of 39

getInstance

KeyPairGenerator.getInsta
nce

Creates a cryptographic object
(KeyPairGenerator) for a selected algorithm.
Also used to select the cryptographic provider
to be used by that object.

initialize Intitializes the cryptographic object for use.
This call is based on a cryptographic object.

generateKeyPair Generates a cryptographic key pair. This call is
based on a cryptographic object.

Key Security
In accordance with the FIPS 140-2 standards this cryptographic module provides
the user of keys the ability to zero out the key information via a new API.

Service Description

(crypto key object).
zeroize

Zeros out the key(s) associated with a
cryptographic object. This call is based on a
cryptographic object.

Signature
This section describes some of the capabilities that are available as they relate to
signature generation and verification.

Service Description

getInstance

Signature.getInstance

Creates a cryptographic object (Signature) for a
selected algorithm. Also used to select the
cryptographic provider to be used by that
object.

InitSign Intitializes the cryptographic object for use. This
includes the cryptographic private key. This call
is based on a cryptographic object.

Update Update a byte or byte array in the data to be
signed or verified. This call is based on a
cryptographic object.

© Copyright IBM Corp. 2005 Page 13 of 39

Sign Get message digest for all the data thus far
updated, then sign the message digest. This
call is based on a cryptographic object.

InitVerify Intitializes the cryptographic object for use. This
includes the cryptographic public key. This call
is based on a cryptographic object.

verify Verify the signature (compare the result with
the message digest). This call is based on a
cryptographic object.

Secret Key Factory
This section describes some of the capabilities that are available as they relate to
symmetric keys.

Service Description

GetInstance Creates a cryptographic object
(SecretKeyFactory) for a selected algorithm.
Also used to select the cryptographic provider
to be used by that object.

GetKeySpec Returns a specification (key material) of the
given key in the requested format.

generateSecret Generates a SecretKey object from the
provided key specification (key material).

KeyFactory
This section describes some of the capabilities that are available as they relate to
asymmetric keys.

GetInstance Creates a cryptographic object (KeyFactory) for
a selected algorithm. Also used to select the
cryptographic provider to be used by that object

GeneratePublic Generates a public key object from the
provided key specification (key material).

GeneratePrivate Generates a private key object from the
provided key specification (key material).

© Copyright IBM Corp. 2005 Page 14 of 39

provided key specification (key material).

getKeySpec Returns a specification (key material) of the
given key object in the requested format.

Cryptographic Module Roles

The cryptographic module implements both a Crypto Officer and a User role,
meeting all FIPS 140-2 level 1 requirements for roles and services. A
Maintenance Role is not implemented. The module does not provide
authentication for any role.

Cryptographic Officer role

The Crypto Officer role has responsibility for initiating on-demand self test
diagnostics. This is accomplished through the runSelfTest API call described in
the IBMJCEFIPS provider Cryptographic Module API document.

Cryptographic User role

The User role has the responsibility for operating cryptographic functions on
data.

User guidance information is available in the IBMJCEFIPS provider
Cryptographic Module API document.

There is no maintenance role.

Only one role is implicitly active in the module at a time.

Cryptographic Module Key Management
The module supports the use of the following cryptographic keys: Diffie-Hellman
public/private keys, Triple DES, AES, RSA public/private keys, DSA
public/private keys, and HMAC-SHA1.

Operators of the module have full access to key material. These keys are
accessed by calling the various cryptographic services specified in the
IBMJCEFIPS provider Cryptographic Module API Javadoc.

© Copyright IBM Corp. 2005 Page 15 of 39

Key Generation

Symmetric keys are generated using the FIPS Approved FIPS 186-2 (Appendix
3.1 and 3.3) pseudo random-number generation algorithm.

DSA parameters, along with public and private keys are generated using the
random number algorithms as defined in FIPS 186-2. DSA and RSA key pairs
are generated as defined in FIPS 186-2.

IBM has invented a scheme to generate randomness on a wide range of
computer systems. The patented scheme, called the Universal Software Based
True Random Number Generator, utilizes random events influenced by
concurrent activities in the system (e.g. interrupts, process scheduling, etc). The
run time of the algorithm will vary depending of the state of the system at the time
of seed generation, and will be dependent on the type of system. The Universal
Software Based True Random Number Generator is used to create a random
seed value that is used in the PRNG algorithm, if a seed value is not supplied to
the PRNG by the user.

Key Storage
We do not support key storage within the IBMJCEFIPS cryptographic module.

Key Protection

The management and allocation of memory is the responsibility of the operating
system. It is assumed that a unique process space is allocated for each request,
and that the operating system and the underlying central processing unit (CPU)
hardware control access to that space.

Each instance of the cryptographic module is self-contained within a process
space. Only one instance of the module is available in each process space. All
keys are associated with the User role.

Key Zeroization

All cryptographic keys and contexts are zeroized when an operator:

© Copyright IBM Corp. 2005 Page 16 of 39

• Disposes of a key using the zeroize API call for that key object.

• When Java garbage collection is performed for an object no longer
referenced, as part of the objects finalize method.

• Powers off the module by unloading it from memory

Cryptographic Module Self-Tests

When an application references the cryptographic module within the JVM in its
process space, an initialization routine is called by the JVM before control is
handed to the application. This initialization route automatically executes the
power up tests to ensure correct operation of the cryptographic algorithms.

The integrity of the module is verified by performing a HMAC-SHA1 validation of
the cryptographic module’s classes contained in the module’s jar file. The
initialization route will only succeed if the HMAC is valid.

Power-up self-tests include known answer tests for the RSA, Diffie-Hellman,
SHA1, SHA-256, SHA-384, SHA-512, Triple DES, AES, DSA, HMAC SHA1
cryptographic algorithms and pseudo random number generation. Should any
self-test fail, the module transitions to the Error state.

These self tests can also be run on demand by the cryptographic officer via the
runSelfTest method.

Additionally, conditional tests are performed when asymmetric keys are
generated and random number generators are invoked. These tests include a
continuous random number generator test and pair-wise consistency tests of the
generated DSA and RSA keys.

User Guidance

Programming practices

This section contains guidance for application programmers to avoid practices
that could potentially compromise the secure use of this cryptographic module.

• Zeroize - the zeroize method should be used when a cryptographic key
object is no longer needed to remove the key from memory. While normal
Java garbage collection will zeroize the key from memory as part of the

© Copyright IBM Corp. 2005 Page 17 of 39

object finalizer method it is a safer coding practice to explicitly call the
zeroize method when an application is finished with a key object.

• Statics – To ensure that each cryptographic object is unique and
accessible only by the individual user it is important not to use static
objects, as all users of the JVM share these objects.

As the Java architecture creates objects that are unique to the application
and this allows for “single” user access to the cryptographic operations
and data it is recommended that an application not create static objects.
Static objects are shared in the Java architecture and the creation of a
static object would be counter to the unique object method of controlling
access and data.

• An application that wishes to use FIPS validated cryptography must use
the IBM Secure Random algorithm associated with the IBMJCEFIPS
provider for the source of random data needed by algorithms.

• RSA Cryptographic Cipher may only be used to Encrypt and Decrypt keys
for transport to stay within the boundaries of the Approved Mode of FIPS
140-2 Level 1.

• One way to help alleviate performance problems is by creating a single
source of randomness (IBMSecureRandom or FIPSPRNG) and using that
object when ever possible.

• MD5, RSAforSSL and DSAforSSL can only be used if the user is
implementing the TLS protocol for Secure Sockets. Any other use will
cause the application to be in non-compliance.

Installation and Security rules for using IBMJCEFIPS

This section contains guidance for the installation and use of the FIPS 140-2
level 1 cryptographic module.

The IBMJCEFIPS provider jar file must be accessible via the Java CLASSPATH
and should be installed in the directory lib/ext as this is a secure location and is
also automatically available via the JVM without a CLASSPATH update.

The application will be required to call the IBMJCEFIPS provider (as opposed to
another JCE provider) through the normal Java 2 mechanisms such as
specifically adding the provider name to the getInstance call as part of the
instantiation of a cryptographic object or by placing the IBMJCEFIPS provider

© Copyright IBM Corp. 2005 Page 18 of 39

higher in the provider list (in java.security) and allowing the JVM to select the first
provider that has the requested cryptographic capability.

Cryptographic Module Operating system environment

Framework
The cryptographic module is dependant on the operating system environment
being set up in accordance with FIPS 140-2 specifications. For this
cryptographic provider a valid commercial grade installation of a Java SDK 1.3.1
or higher JVM must be available.

A valid commercial grade installation of a Java SDK 1.3.1 or higher JVM that
includes the Java Cryptographic Extension framework (Version 1.2.1) is required.
(Please note that a JVM at 1.4.0 or higher already contains the JCE framework).
In addition to the SDK and the JCE framework the IBMJCEFIPS provider is
required.

The following is a brief overview of the JCE framework (A more detailed
explanation of this framework is available at
(http://java.sun.com/products/jce/doc/guide/HowToImplAProvider.html#MutualAut
h)

In order to prevent unauthorized providers from plugging into the JCE 1.2.1
framework (herein referred to as "JCE 1.2.1"), and to assure authorized providers
of the integrity and authenticity of the JCE 1.2.1 that they plug into, JCE 1.2.1
and its providers will engage in mutual authentication. Only providers that have
authenticated JCE 1.2.1, and who in turn have been authenticated by JCE 1.2.1,
will become usable in the JCE 1.2.1 environment. For more information about
this, please see the above web page.

In addition, each provider does do self-integrity checking to ensure that the JAR
file containing its code has not been tampered with. The JCE 1.2.1 framework is
digitally signed. Providers that provide implementations for JCE 1.2.1 services
must also be digitally signed. Authentication includes verification of those
signatures and ensuring the signatures were generated by trusted entities.

© Copyright IBM Corp. 2005 Page 19 of 39

Certain Certificate Authorities are deemed to be "trusted" and any code signed
using a certificate that can be traced up a certificate chain to a certificate for one
of the trusted Certificate Authorities are considered trusted. Both JCE 1.2.1 and
provider packages do embed within themselves the bytes for the certificates for
the relevant trusted Certificate Authorities. At runtime, the embedded certificates
will be used in determining whether or not code is authentic. Currently, there are
two trusted Certification Authorities: Sun Microsystems' JCE Code Signing CA,
and IBM JCE Code Signing CA.

In order to insure that an application is using the FIPS validated cryptographic
module, the application is required to call the IBMJCEFIPS provider (as opposed
to another JCE provider) through the normal Java 2 mechanisms such as
specifically adding the provider name to the getInstance call as part of the
instantiation of a cryptographic object or by placing the IBMJCEFIPS provider
higher in the provider list and allowing the JVM to select the first provider that has
the requested cryptographic capability.

Single user access (operating system requirements)
This cryptographic module adheres to the FIPS 140-2 level 1 requirement that
the operating system must be restricted to a single operator mode (concurrent
operators are explicitly excluded). The following explains how to configure a Unix
system for single user. The general idea is across all Unix variants:

• Remove all login accounts except “root” (the superuser).

• Disable NIS and other name services for users and groups.

• Turn off all remote login, remote command execution and file transfer
daemons.

The Windows Operating Systems can be configured in a single user mode by
disabling all user accounts except the administrator. This can be done through
the Computer Management window of the operating system. Additionally, the
operating system must be configured to operate securely and to prevent remote
login. This can be done by disabling any service (within the Administrative tools)
that provider remote access (e.g. – ftp, telnet, ssh, and server) and disallowing
multiple operators to log in at once.

Java object model
The use of Java objects within the cryptographic module. In Java each
cryptographic object is unique. Thus when an application generates a

© Copyright IBM Corp. 2005 Page 20 of 39

cryptographic object for use that object is unique to that instance of the
application. In this regard other processes have no access to that object and can
therefore not interrupt or gain access to the information or activities contained
within that object. In this way the cryptographic module protects the single users
control of the cryptographic activities and data.
Further as the Self Test class is a Java static object there can be only one
instance of that class in the JVM and that instance controls the Self Test
activities. In other words if the Self Test fails, then no cryptographic objects for
the IBMJCEFIPS provider in the JVM will be operational as the cryptographic
module would be in “Error” state.

As the Java architecture creates objects that are unique to the application and
this allows for “single” user access to the cryptographic operations and data. It is
recommended that an application not create static objects. Static objects are
shared in the Java architecture and the creation of a static object would be
counter to the unique object method of controlling access and data.

Operating system restriction
The operation of the cryptographic module is assumed to be in single user mode
in that only one user is on the system at any point in time.

Mitigation of other attacks

The IBMJCEFIPS provider has been obfuscated. The commercial product
KlassMaster provides code obfuscation. This level of optimized code makes it
difficult to decompile and reuse the derived source code. IBM's tests with
popular de-compilers (e.g. Jasmine) has shown that de-compiled IBMJCEFIPS
code for Java code cannot be compiled and used without extensive alteration

RSA Blinding has been added to the RSA Signing and RSA encryption function
to help mitigate timing attacks.

No other mitigation of other attacks is provided.

© Copyright IBM Corp. 2005 Page 21 of 39

References

[1] National Institute of Standards and Technology. May 2001. Security
Requirements for Cryptographic Modules. Federal Information Processing
Standards Publication 140-2.

[2] National Institute of Standards and Technology. November 2001. AES Key
Wrap Specification. Internet. 22 April 2002.
http://csrc.nist.gov/encryption/kms/key-wrap.pdf

Appendix A: Function List
The following is a list of the public functions found in this module. Please refer to
the IBM Java JCE FIPS (IBMJCEFIPS) Cryptographic Module API document.

A
addIdentity(Identity) - Method in class
com.ibm.crypto.fips.provider.IdentityDatabase
Adds an identity to the database.
AESCipher - class com.ibm.crypto.fips.provider.AESCipher.
This class implements the AES algorithm in its various modes (ECB, CFB, OFB,
CBC, PCBC) and padding schemes (PKCS5Padding, NoPadding).
AESCipher() - Constructor for class com.ibm.crypto.fips.provider.AESCipher
Creates an instance of AES cipher with default ECB mode and PKCS5Padding.
AESCipher(String, String) - Constructor for class
com.ibm.crypto.fips.provider.AESCipher
Creates an instance of AES cipher with the requested mode and padding.
AESKeyFactory - class com.ibm.crypto.fips.provider.AESKeyFactory.
This class implements the AES key factory of the IBMJCEFIPS provider.
AESKeyFactory() - Constructor for class
com.ibm.crypto.fips.provider.AESKeyFactory
Verify the JCE framework in the constructor.
AESKeyGenerator - class com.ibm.crypto.fips.provider.AESKeyGenerator.
This class generates a secret key for use with the AES algorithm.
AESKeyGenerator() - Constructor for class
com.ibm.crypto.fips.provider.AESKeyGenerator
Verify the JCE framework in the constructor.
AESKeySpec - class com.ibm.crypto.fips.provider.AESKeySpec.
This class specifies a AES key.
AESKeySpec(byte[]) - Constructor for class
com.ibm.crypto.fips.provider.AESKeySpec
Uses the bytes in key as the key material for the AES key.
AESKeySpec(byte[], int, int) - Constructor for class
com.ibm.crypto.fips.provider.AESKeySpec

© Copyright IBM Corp. 2005 Page 22 of 39

Uses the bytes in key, beginning at offset inclusive, as the key material for the
AES key.
AESParameters - class com.ibm.crypto.fips.provider.AESParameters.
This class implements the parameter (IV) used with the AES algorithm in
feedback-mode.
AESParameters() - Constructor for class
com.ibm.crypto.fips.provider.AESParameters
This is the constructor for this class.
AESSecretKey - class com.ibm.crypto.fips.provider.AESSecretKey.
This class represents an AES key.
AlgorithmStatus - interface com.ibm.crypto.fips.provider.AlgorithmStatus.
This class can be used to identify if the cryptographic operation (algorithm) is
FIPS certified

--

B
BEGIN_CERT - Static variable in class
com.ibm.crypto.fips.provider.X509Factory
String that identifies the beginning of a certificate.

--

C
CipherWithWrappingSpi - class
com.ibm.crypto.fips.provider.CipherWithWrappingSpi.
This class extends the javax.crypto.CipherSpi class with a concrete
implementation of the methods for wrapping and unwrapping keys.
CipherWithWrappingSpi() - Constructor for class
com.ibm.crypto.fips.provider.CipherWithWrappingSpi
This is the constructor for this class.
clone() - Method in class com.ibm.crypto.fips.provider.SHA

Clones this object.
clone()- Method in class com.ibm.crypto.fips.provider.MD5

Clones this object.
clone()- Method in class com.ibm.crypto.fips.provider.SHA2

Clones this object.
clone()- Method in class com.ibm.crypto.fips.provider.SHA3

Clones this object.
clone()- Method in class com.ibm.crypto.fips.provider.SHA5

Clones this object.
clone() - Method in class com.ibm.crypto.fips.provider.HmacSHA1
Clones this object.
com.ibm.crypto.fips.provider - package com.ibm.crypto.fips.provider
The package for this cryptographic module.

© Copyright IBM Corp. 2005 Page 23 of 39

--

D

DatawithDSA - class com.ibm.crypto.fips.provider.DatawithDSA.
DatawithDSA() - Constructor for class
com.ibm.crypto.fips.provider.DatawithDSA
Constructs a new instance of this class.
DatawithRSA - class com.ibm.crypto.fips.provider.DatawithRSA.
This class implements signature without this algorithm doing the hashing with
RSA.
DatawithRSA() - Constructor for class
com.ibm.crypto.fips.provider.DatawithRSA Construct a blank RSA object.
DESedeCipher - class com.ibm.crypto.fips.provider.DESedeCipher.
This class implements the triple-DES algorithm (DES-EDE) in its various modes
(ECB, CFB, OFB, CBC, PCBC) and padding schemes (PKCS5Padding,
NoPadding).
DESedeCipher() - Constructor for class
com.ibm.crypto.fips.provider.DESedeCipher
Creates an instance of DESede cipher with default ECB mode and
PKCS5Padding.
DESedeCipher(String, String) - Constructor for class
com.ibm.crypto.fips.provider.DESedeCipher
Creates an instance of DESede cipher with the requested mode and padding.
DESedeKey - class com.ibm.crypto.fips.provider.DESedeKey.
This class represents a DES-EDE key.
DESedeKeyFactory - class com.ibm.crypto.fips.provider.DESedeKeyFactory.
This class implements the DES-EDE key factory of the IBMJCEFIPS provider.
DESedeKeyFactory() - Constructor for class
com.ibm.crypto.fips.provider.DESedeKeyFactory
Verify the JCE framework in the constructor.
DESedeKeyGenerator - class
com.ibm.crypto.fips.provider.DESedeKeyGenerator.
This class generates a Triple DES key.
DESedeKeyGenerator() - Constructor for class
com.ibm.crypto.fips.provider.DESedeKeyGenerator
Verify the JCE framework in the constructor.
DESedeParameters - class com.ibm.crypto.fips.provider.DESedeParameters.
This class implements the parameter (IV) used with the Triple DES algorithm in
feedback-mode.
DESedeParameters() - Constructor for class
com.ibm.crypto.fips.provider.DESedeParameters
This is the constructor for this class.
DHKeyAgreement - class com.ibm.crypto.fips.provider.DHKeyAgreement.

© Copyright IBM Corp. 2005 Page 24 of 39

This class implements the Diffie-Hellman key agreement protocol between any
number of parties.
DHKeyAgreement() - Constructor for class
com.ibm.crypto.fips.provider.DHKeyAgreement
Verify the JCE framework in the constructor.
DHKeyFactory - class com.ibm.crypto.fips.provider.DHKeyFactory.
This class implements the Diffie-Hellman key factory of the IBMJCEFIPS
provider.
DHKeyFactory() - Constructor for class
com.ibm.crypto.fips.provider.DHKeyFactory
Verify the JCE framework in the constructor.
DHKeyPairGenerator - class
com.ibm.crypto.fips.provider.DHKeyPairGenerator.
This class represents the key pair generator for Diffie-Hellman key pairs.
DHKeyPairGenerator() - Constructor for class
com.ibm.crypto.fips.provider.DHKeyPairGenerator
This is the constructor for this class.
DHParameterGenerator - class
com.ibm.crypto.fips.provider.DHParameterGenerator.
This class is used to generate DH parameters.
DHParameterGenerator() - Constructor for class
com.ibm.crypto.fips.provider.DHParameterGenerator
This is the constructor for this class.
DHParameters - class com.ibm.crypto.fips.provider.DHParameters.
This class implements the parameter set used by the Diffie-Hellman key
agreement as defined in the PKCS #3 standard.
DHParameters() - Constructor for class
com.ibm.crypto.fips.provider.DHParameters
This is the constructor for this class.
DHPrivateKey - class com.ibm.crypto.fips.provider.DHPrivateKey.
A private key in PKCS#8 format for the Diffie-Hellman key agreement algorithm.
DHPublicKey - class com.ibm.crypto.fips.provider.DHPublicKey.
A public key in X.509 format for the Diffie-Hellman key agreement algorithm.
DSAKeyFactory - class com.ibm.crypto.fips.provider.DSAKeyFactory.
This class is a concrete implementaion of key factory for DSA.
DSAKeyFactory() - Constructor for class
com.ibm.crypto.fips.provider.DSAKeyFactory
Constructs a new instance of this class.
DSAKeyPairGenerator - class
com.ibm.crypto.fips.provider.DSAKeyPairGenerator.
This class is a concrete implementation for the generation of a pair of DSA keys
DSAKeyPairGenerator() - Constructor for class
com.ibm.crypto.fips.provider.DSAKeyPairGenerator
This is the constructor for this class.
DSAParameterGenerator - class
com.ibm.crypto.fips.provider.DSAParameterGenerator.

© Copyright IBM Corp. 2005 Page 25 of 39

This class generates parameters for the DSA signature.
DSAParameterGenerator() - Constructor for class
com.ibm.crypto.fips.provider.DSAParameterGenerator
Constructs a new instance of this class.
DSAParameters - class com.ibm.crypto.fips.provider.DSAParameters.
This class implements Digital Signature Algorithm paremters specified by
com.ibm.crypto.fips.provider 186 standard.
DSAParameters() - Constructor for class
com.ibm.crypto.fips.provider.DSAParameters
This is the constructor for this class.
DSAPrivateKey - class com.ibm.crypto.fips.provider.DSAPrivateKey.
This class represents an X.509 private key for the DSA Algorithm.
DSAPublicKey - class com.ibm.crypto.fips.provider.DSAPublicKey.
This class represents an X.509 public key for the DSA Algorithm.

--

E
END_CERT - Static variable in class com.ibm.crypto.fips.provider.X509Factory

engineGenerateCertificate(InputStream) - Method in class
com.ibm.crypto.fips.provider.X509Factory
Generates an X.509 certificate object and initializes it with the data read from the
input stream is.
engineGenerateCertificates(InputStream) - Method in class
com.ibm.crypto.fips.provider.X509Factory
Returns a (possibly empty) collection view of X.509 certificates read from the
given input stream is.
engineGenerateCertPath(InputStream) - Method in class
com.ibm.crypto.fips.provider.X509Factory
Generates a CertPath object and initializes it with the data read from the input
stream inStream.
engineGenerateCertPath(InputStream, String) - Method in class
com.ibm.crypto.fips.provider.X509Factory
Generates a CertPath object and initializes it with the data read from the input
stream inStream.
engineGenerateCertPath(List) - Method in class
com.ibm.crypto.fips.provider.X509Factory
Generates a CertPath object and initializes it with the list of certificates supplied.
engineGenerateCRL(InputStream) - Method in class
com.ibm.crypto.fips.provider.X509Factory
Generates an X.509 certificate revocation list (CRL) object and initializes it with
the data read from the given input stream is.
engineGenerateCRLs(InputStream) - Method in class
com.ibm.crypto.fips.provider.X509Factory

© Copyright IBM Corp. 2005 Page 26 of 39

Returns a (possibly empty) collection view of X.509 CRLs read from the given
input stream is.
engineGenerateSeed(int) - Method in class
com.ibm.crypto.fips.provider.SecureRandom
Generates a seed of the length passed in.
engineGetCertPathEncodings() - Method in class
com.ibm.crypto.fips.provider.X509Factory
Returns the encodings supported by this certification path factory, with the
default encoding first.
engineNextBytes(byte[]) - Method in class
com.ibm.crypto.fips.provider.SecureRandom
Generates random data of the length of the array passed in.
engineSetSeed(byte[]) - Method in class
com.ibm.crypto.fips.provider.SecureRandom
Sets the set based on the byte array passed in.
equals(Object) - Method in class com.ibm.crypto.fips.provider.DESedeKey
Determines if the passed in object is equal to this object.
equals(Object) - Method in class com.ibm.crypto.fips.provider.DHPrivateKey
Determines if the passed in object is equal to this object.
equals(Object) - Method in class com.ibm.crypto.fips.provider.DHPublicKey
Determines if the passed in object is equal to this object.

--

F
FeedbackCipher - interface com.ibm.crypto.fips.provider.FeedbackCipher.
This interface represents the type of cipher that has a feedback mechanism built
into it, such as CBC or CFB.
FIPSRuntimeException - exception
com.ibm.crypto.fips.provider.FIPSRuntimeException.
Run time exception class.
FIPSRuntimeException() - Constructor for class
com.ibm.crypto.fips.provider.FIPSRuntimeException
Constructs a FIPSRuntimeException with no detail message.
FIPSRuntimeException(String) - Constructor for class
com.ibm.crypto.fips.provider.FIPSRuntimeException
Constructs a FIPSRuntimeException with the specified detail message.
fromFile(File) - Static method in class
com.ibm.crypto.fips.provider.IdentityDatabase
Initialize an IdentityDatabase from file.
fromStream(InputStream) - Static method in class
com.ibm.crypto.fips.provider.IdentityDatabase
Initialize an identity database from a stream.

--

© Copyright IBM Corp. 2005 Page 27 of 39

G
generateKeyPair() - Method in class
com.ibm.crypto.fips.provider.DHKeyPairGenerator
Generates a key pair.
generateKeyPair() - Method in class
com.ibm.crypto.fips.provider.RSAKeyPairGenerator
Generates a key pair.
generateKeyPair() - Method in class
com.ibm.crypto.fips.provider.DSAKeyPairGenerator
Generates a key pair.
getAlgorithm() - Method in class com.ibm.crypto.fips.provider.DESedeKey
Returns the algorithm of this key.
getAlgorithm() - Method in class com.ibm.crypto.fips.provider.AESSecretKey
 Returns the algorithm of this key.
getAlgorithm() - Method in class com.ibm.crypto.fips.provider.DHPrivateKey
Returns the name of the algorithm associated with this key: "DH"
getAlgorithm() - Method in class com.ibm.crypto.fips.provider.DHPublicKey
Returns the name of the algorithm associated with this key: "DH"
getCrtCoefficient() - Method in class
com.ibm.crypto.fips.provider.RSAPrivateCrtKey
Returns the crtCoefficient.
getEncoded() - Method in class com.ibm.crypto.fips.provider.DESedeKey
Get the encoding of the key.
getEncoded() - Method in class com.ibm.crypto.fips.provider.AESSecretKey
Get the encoding of the key.
getEncoded() - Method in class com.ibm.crypto.fips.provider.DHPrivateKey
Get the encoding of the key.
getEncoded() - Method in class com.ibm.crypto.fips.provider.DHPublicKey
Get the encoding of the key.
getFeedback() - Method in interface
com.ibm.crypto.fips.provider.FeedbackCipher
Gets the name of the feedback mechanism
getFipsLevel() - Method in class com.ibm.crypto.fips.provider.IBMJCEFIPS
Method returns the cryptographic modules FIPS 140-2 certification level
getFipsLevel() - Method in interface com.ibm.crypto.fips.provider.ModuleStatus
Method returns the cryptographic modules FIPS 140-2 certification level
getFormat() - Method in class com.ibm.crypto.fips.provider.DESedeKey
Returns the encoding format of this key
getFormat() - Method in class com.ibm.crypto.fips.provider.AESSecretKey
Returns the encoding format of this key
getFormat() - Method in class com.ibm.crypto.fips.provider.DHPrivateKey
Returns the encoding format of this key: "PKCS#8"
getFormat() - Method in class com.ibm.crypto.fips.provider.DHPublicKey
Returns the encoding format of this key: "X.509"

© Copyright IBM Corp. 2005 Page 28 of 39

getIdentity(PublicKey) - Method in class
com.ibm.crypto.fips.provider.IdentityDatabase
Get an identity by key.
getIdentity(String) - Method in class
com.ibm.crypto.fips.provider.IdentityDatabase
Get an identity named by the passed in string.
getIV() - Method in interface com.ibm.crypto.fips.provider.FeedbackCipher
Gets the initialization vector.
getKey() - Method in class com.ibm.crypto.fips.provider.AESKeySpec
Returns the AES key material.
getModulus() - Method in class com.ibm.crypto.fips.provider.RSAPrivateKey
Return the modulus.
getModulus() - Method in class com.ibm.crypto.fips.provider.RSAPrivateCrtKey
Return the modulus.
getModulus() - Method in class com.ibm.crypto.fips.provider.RSAPublicKey
Return the modulus.
getParams() - Method in class com.ibm.crypto.fips.provider.DHPrivateKey
Returns the key parameters.
getParams() - Method in class com.ibm.crypto.fips.provider.DHPublicKey
Returns the key parameters.
getParams() - Method in class com.ibm.crypto.fips.provider.DSAPublicKey
Return the DSA parameters for the receiver.
getParams() - Method in class com.ibm.crypto.fips.provider.DSAPrivateKey
Returns the DSA parameters associated with this key, or null if the parameters
could not be parsed.
getPrimeExponentP() - Method in class
com.ibm.crypto.fips.provider.RSAPrivateCrtKey
Returns the primeExponentP.
getPrimeExponentQ() - Method in class
com.ibm.crypto.fips.provider.RSAPrivateCrtKey
Returns the primeExponentQ.
getPrimeP() - Method in class com.ibm.crypto.fips.provider.RSAPrivateCrtKey
Returns the primeP.
getPrimeQ() - Method in class com.ibm.crypto.fips.provider.RSAPrivateCrtKey
Returns the primeQ.
getPrivateExponent() - Method in class
com.ibm.crypto.fips.provider.RSAPrivateKey
Return the private exponent.
getPrivateExponent() - Method in class
com.ibm.crypto.fips.provider.RSAPrivateCrtKey
Return the private exponent.
getPublicExponent() - Method in class
com.ibm.crypto.fips.provider.RSAPrivateCrtKey
Returns the public exponent.
getPublicExponent() - Method in class
com.ibm.crypto.fips.provider.RSAPublicKey

© Copyright IBM Corp. 2005 Page 29 of 39

Return the public exponent.
getSelfTest() - Method in class com.ibm.crypto.fips.provider.IBMJCEFIPS
Method returns a SelfTest object that can be used to
getSelfTest() - Method in interface com.ibm.crypto.fips.provider.ModuleStatus
Method returns a SelfTest object that can be used to
getSelfTestFailure() - Method in class com.ibm.crypto.fips.provider.SelfTest
Method identifies any failures associated with the last self test
getX() - Method in class com.ibm.crypto.fips.provider.DHPrivateKey
Returns the private value, x.
getX() - Method in class com.ibm.crypto.fips.provider.DSAPrivateKey
Return the value of the private key.
getY() - Method in class com.ibm.crypto.fips.provider.DHPublicKey
Returns the public value, y.
getY() - Method in class com.ibm.crypto.fips.provider.DSAPublicKey
Return the value of the public key.

--

H
hashCode() - Method in class com.ibm.crypto.fips.provider.DESedeKey
Calculates a hash code value for the object.
hashCode() - Method in class com.ibm.crypto.fips.provider.DHPrivateKey
Calculates a hash code value for the object.
hashCode() - Method in class com.ibm.crypto.fips.provider.DHPublicKey
Calculates a hash code value for the object.
HmacSHA1 - class com.ibm.crypto.fips.provider.HmacSHA1.
This is an implementation of the HMAC-SHA1 algorithm.
HmacSHA1() - Constructor for class com.ibm.crypto.fips.provider.HmacSHA1
Standard constructor, creates a new HmacSHA1 instance.
HmacSHA1KeyGenerator - class
com.ibm.crypto.fips.provider.HmacSHA1KeyGenerator.
This class generates a secret key for use with the HMAC-SHA1 algorithm.
HmacSHA1KeyGenerator() - Constructor for class
com.ibm.crypto.fips.provider.HmacSHA1KeyGenerator
Verify the JCE framework in the constructor.

--

I
IBMJCEFIPS - class com.ibm.crypto.fips.provider.IBMJCEFIPS.
Defines the "IBMJCEFIPS" provider.
IBMJCEFIPS() - Constructor for class com.ibm.crypto.fips.provider.IBMJCEFIPS
The constructor for this class.
identities() - Method in class com.ibm.crypto.fips.provider.IdentityDatabase
Enumerates all the identities in the database

© Copyright IBM Corp. 2005 Page 30 of 39

IdentityDatabase - class com.ibm.crypto.fips.provider.IdentityDatabase.
An implementation of IdentityScope as a persistent identity database.
IdentityDatabase(File) - Constructor for class
com.ibm.crypto.fips.provider.IdentityDatabase
Construct a new, empty database with a specified source file.
IdentityDatabase(String) - Constructor for class
com.ibm.crypto.fips.provider.IdentityDatabase
Construct a new, empty database.
init() - Method in class com.ibm.crypto.fips.provider.SHA
Initialize the SHA information
init() - Method in class com.ibm.crypto.fips.provider.MD5
Initialize the MD5 information
init() - Method in class com.ibm.crypto.fips.provider.SHA2
Initialize the SHA5 information
init() - Method in class com.ibm.crypto.fips.provider.SHA3
Initialize the SHA2 information
init() - Method in class com.ibm.crypto.fips.provider.SHA5
Initialize the SHA3 information
initialize(AlgorithmParameterSpec, SecureRandom) - Method in class
com.ibm.crypto.fips.provider.DHKeyPairGenerator
Initializes this key pair generator for the specified parameter set and source of
randomness.
initialize(AlgorithmParameterSpec, SecureRandom) - Method in class
com.ibm.crypto.fips.provider.RSAKeyPairGenerator
Initializes this key pair generator for the specified parameter set and source of
randomness.
initialize(AlgorithmParameterSpec, SecureRandom) - Method in class
com.ibm.crypto.fips.provider.DSAKeyPairGenerator
Initialize the receiver to use a given secure random generator, and generate keys
from the provided set of parameters.
initialize(int) - Method in class
com.ibm.crypto.fips.provider.RSAKeyPairGenerator
Initializes this key pair generator for a certain keysize.
initialize(int, SecureRandom) - Method in class
com.ibm.crypto.fips.provider.DHKeyPairGenerator
Initializes this key pair generator for a certain keysize and source of randomness.
initialize(int, SecureRandom) - Method in class
com.ibm.crypto.fips.provider.RSAKeyPairGenerator
Initializes this KeyPairGenerator for given modulus and random source
initialize(int, SecureRandom) - Method in class
com.ibm.crypto.fips.provider.DSAKeyPairGenerator
Initialize the receiver to use a given secure random generator, and generate keys
of a certain size.
isFipsApproved() - Method in class com.ibm.crypto.fips.provider.X509Factory
This function allows an application to verify the algorithm is FIPS approved.

© Copyright IBM Corp. 2005 Page 31 of 39

isFipsApproved() - Method in class
com.ibm.crypto.fips.provider.DHParameterGenerator
This function allows an application to verify the algorithm is FIPS approved.
isFipsApproved() - Method in class com.ibm.crypto.fips.provider.SHA
This function allows an application to verify the algorithm is FIPS approved.
isFipsApproved() - Method in class com.ibm.crypto.fips.provider.SHA2
This function allows an application to verify the algorithm is FIPS approved.
isFipsApproved() - Method in class com.ibm.crypto.fips.provider.SHA3
This function allows an application to verify the algorithm is FIPS approved.
isFipsApproved() - Method in class com.ibm.crypto.fips.provider.SHA5
This function allows an application to verify the algorithm is FIPS approved.
isFipsApproved() - Method in class com.ibm.crypto.fips.provider.MD5
This function allows an application to verify the algorithm is FIPS approved.
isFipsApproved() - Method in interface
com.ibm.crypto.fips.provider.AlgorithmStatus
Module identifies if the cryptographic operation (algorithm) is FIPS certified
isFipsApproved() - Method in class
com.ibm.crypto.fips.provider.DHParameters
This function allows an application to verify the algorithm is FIPS approved.
isFipsApproved() - Method in class
com.ibm.crypto.fips.provider.AESParameters
This function allows an application to verify the algorithm is FIPS approved.
isFipsApproved() - Method in class com.ibm.crypto.fips.provider.DHKeyFactory
This function allows an application to verify the the algorithm is FIPS approved.
isFipsApproved() - Method in class
com.ibm.crypto.fips.provider.AESKeyFactory
This function allows an application to verify the algorithm is FIPS approved.
isFipsApproved() - Method in class
com.ibm.crypto.fips.provider.DHKeyPairGenerator
This function allows an application to verify the the algorithm is FIPS approved.
isFipsApproved() - Method in class
com.ibm.crypto.fips.provider.HmacSHA1KeyGenerator
This function allows an application to verify the algorithm is FIPS approved.
isFipsApproved() - Method in class com.ibm.crypto.fips.provider.SHA1withDSA
This function allows an application to verify the algorithm is FIPS approved.
isFipsApproved() - Method in class com.ibm.crypto.fips.provider.AESKeySpec
This function allows an application to verify the algorithm is FIPS approved.
isFipsApproved() - Method in class
com.ibm.crypto.fips.provider.DSAParameters
This function allows an application to verify the algorithm is FIPS approved.
isFipsApproved() - Method in class
com.ibm.crypto.fips.provider.RSAKeyPairGenerator
This function allows an application to verify the algorithm is FIPS approved.
isFipsApproved() - Method in class
com.ibm.crypto.fips.provider.CipherWithWrappingSpi
This function allows an application to verify the algorithm is FIPS approved.

© Copyright IBM Corp. 2005 Page 32 of 39

isFipsApproved() - Method in class
com.ibm.crypto.fips.provider.DSAKeyFactory
This function allows an application to verify the algorithm is FIPS approved.
isFipsApproved() - Method in class
com.ibm.crypto.fips.provider.RSAKeyFactory
This function allows an application to verify the algorithm is FIPS approved.
isFipsApproved() - Method in class
com.ibm.crypto.fips.provider.DSAKeyPairGenerator
This function allows an application to verify the algorithm is FIPS approved.
isFipsApproved() - Method in class
com.ibm.crypto.fips.provider.DESedeKeyGenerator
This function allows an application to verify the algorithm is FIPS approved.
isFipsApproved() - Method in class com.ibm.crypto.fips.provider.RSA
This function allows an application to verify the algorithm is FIPS approved.
isFipsApproved() - Method in class com.ibm.crypto.fips.provider.RSASSL
This function allows an application to verify the algorithm is FIPS approved.
isFipsApproved() - Method in class com.ibm.crypto.fips.provider.DatawithRSA
This function allows an application to verify the algorithm is FIPS approved.
isFipsApproved() - Method in class com.ibm.crypto.fips.provider.DatawithDSA
This function allows an application to verify the algorithm is FIPS approved.
isFipsApproved() - Method in class
com.ibm.crypto.fips.provider.IdentityDatabase
This function allows an application to verify the algorithm is FIPS approved.
isFipsApproved() - Method in class
com.ibm.crypto.fips.provider.SystemIdentity
This function allows an application to verify the algorithm is FIPS approved.
isFipsApproved() - Method in class com.ibm.crypto.fips.provider.AESCipher
This function allows an application to verify the algorithm is FIPS approved.
isFipsApproved() - Method in class
com.ibm.crypto.fips.provider.DESedeKeyFactory
This function allows an application to verify the algorithm is FIPS approved.
isFipsApproved() - Method in class
com.ibm.crypto.fips.provider.SecureRandom
This function allows an application to verify the algorithm is FIPS approved.
isFipsApproved() - Method in class
com.ibm.crypto.fips.provider.DESedeParameters
This function allows an application to verify the algorithm is FIPS approved.
isFipsApproved() - Method in class com.ibm.crypto.fips.provider.SHA1withRSA
This function allows an application to verify the algorithm is FIPS approved.
isFipsApproved() - Method in class com.ibm.crypto.fips.provider.SystemSigner
This function allows an application to verify the algorithm is FIPS approved.
isFipsApproved() - Method in class
com.ibm.crypto.fips.provider.DESedeCipher
This function allows an application to verify the algorithm is FIPS approved.
isFipsApproved() - Method in class
com.ibm.crypto.fips.provider.DHKeyAgreement

© Copyright IBM Corp. 2005 Page 33 of 39

This function allows an application to verify the algorithm is FIPS approved.
isFipsApproved() - Method in class com.ibm.crypto.fips.provider.HmacSHA1
This function allows an application to verify the algorithm is FIPS approved.
isFipsApproved() - Method in class
com.ibm.crypto.fips.provider.AESKeyGenerator
This function allows an application to verify the algorithm is FIPS approved.
isFipsApproved() - Method in class
com.ibm.crypto.fips.provider.DSAParameterGenerator
This function allows an application to verify the algorithm is FIPS approved.
isFipsCertified() - Method in class com.ibm.crypto.fips.provider.IBMJCEFIPS
Method identifies if the cryptographic module is FIPS 140-2 certified
isFipsCertified() - Method in interface
com.ibm.crypto.fips.provider.ModuleStatus
Method identifies if the cryptographic module is FIPS 140-2 certified
isFipsRunnable() - Static method in class com.ibm.crypto.fips.provider.SelfTest
Method identifies if the cryptographic module is FIPS 140-2 runable, in that the
self test has completed with no failures.
isSelfTestInProgress() - Method in class com.ibm.crypto.fips.provider.SelfTest
Method identifies if a self test is currently in progress
isTrusted() - Method in class com.ibm.crypto.fips.provider.SystemIdentity
Is this identity trusted by sun.* facilities?
isTrusted() - Method in class com.ibm.crypto.fips.provider.SystemSigner
Returns true if this signer is trusted.

--

M
MD5 - class com.ibm.crypto.fips.provider.MD5.
The MD5 class is used to compute an MD5 message digest over a given buffer
of bytes.
MD5() - Constructor for class com.ibm.crypto.fips.provider.MD5
Standard constructor, creates a new MD5 instance, allocates its buffers from the
heap.
ModuleStatus - interface com.ibm.crypto.fips.provider.ModuleStatus.
This class is for determining the FIPS certification of the cryptographic module.

--

P
pad(byte[], int, int) - Method in interface com.ibm.crypto.fips.provider.Padding
Performs padding for the given data input.
Padding - interface com.ibm.crypto.fips.provider.Padding.
Padding interface.
padLength(int) - Method in interface com.ibm.crypto.fips.provider.Padding
Determines how long the padding will be for a given input length.

© Copyright IBM Corp. 2005 Page 34 of 39

padWithLen(byte[], int, int) - Method in interface
com.ibm.crypto.fips.provider.Padding
Adds the given number of padding bytes to the data input.
propertyNames() - Method in class com.ibm.crypto.fips.provider.IBMJCEFIPS
Returns an enumeration of the properties.

--

R
removeIdentity(Identity) - Method in class
com.ibm.crypto.fips.provider.IdentityDatabase
Removes an identity to the database.
reset() - Method in interface com.ibm.crypto.fips.provider.FeedbackCipher
Resets the iv to its original value.
RSA - class com.ibm.crypto.fips.provider.RSA.
This class implements the RSA algorithm.
RSA() - Constructor for class com.ibm.crypto.fips.provider.RSA
Creates an instance of RSA
RSAKeyFactory - class com.ibm.crypto.fips.provider.RSAKeyFactory.
This class implements the RSA key factory of the IBMJCE/IBMJCA provider.
RSAKeyFactory() - Constructor for class
com.ibm.crypto.fips.provider.RSAKeyFactory
The constructor for this class.
RSAKeyPairGenerator - class
com.ibm.crypto.fips.provider.RSAKeyPairGenerator.
This class generates RSA public/private key pairs.
RSAKeyPairGenerator() - Constructor for class
com.ibm.crypto.fips.provider.RSAKeyPairGenerator
The constructor for this class.
RSAPrivateCrtKey - class com.ibm.crypto.fips.provider.RSAPrivateCrtKey.
An X.509 private crt key for the RSA Algorithm.
RSAPrivateKey - class com.ibm.crypto.fips.provider.RSAPrivateKey.
An X.509 private key for the RSA Algorithm.
RSAPublicKey - class com.ibm.crypto.fips.provider.RSAPublicKey.
An X.509 public key for the RSA Algorithm.
RSASSL - class com.ibm.crypto.fips.provider.RSASSL.
This class uses the RSA class with blinding turned on.
RSASSL() - Constructor for class com.ibm.crypto.fips.provider.RSASSL
Creates an instance of RSASSL.
runSelfTest() - Method in class com.ibm.crypto.fips.provider.SelfTest
Method initiates a new self test

--

S

© Copyright IBM Corp. 2005 Page 35 of 39

save() - Method in class com.ibm.crypto.fips.provider.IdentityDatabase
Saves the database to the default source file.
save(OutputStream) - Method in class
com.ibm.crypto.fips.provider.IdentityDatabase
Save the database in its current state to an output stream.
SecureRandom - class com.ibm.crypto.fips.provider.SecureRandom.
This class provides a cryptographically strong pseudo-random number generator
based on the SHA1 message digest algorithm.
SecureRandom() - Constructor for class
com.ibm.crypto.fips.provider.SecureRandom
Constructs a new instance of this class.
SecureRandom(byte[]) - Constructor for class
com.ibm.crypto.fips.provider.SecureRandom
Constructs a new instance of this class with a seed
SelfTest - class com.ibm.crypto.fips.provider.SelfTest.
 This class tests the function of this cryptographic module.
SelfTest() - Constructor for class com.ibm.crypto.fips.provider.SelfTest
Constructs a new instance of this class.
setTrusted(boolean) - Method in class
com.ibm.crypto.fips.provider.SystemIdentity
Set the trust status of this identity
SHA - class com.ibm.crypto.fips.provider.SHA.
This class implements the Secure Hash Algorithm (SHA) developed by the
National Institute of Standards and Technology along with the National Security
Agency.
SHA() - Constructor for class com.ibm.crypto.fips.provider.SHA
Standard constructor, creates a new SHA instance, allocates its buffers from the
heap.
SHA1withDSA - class com.ibm.crypto.fips.provider.SHA1withDSA.
This class implements signature using SHA1 with DSA.
SHA1withDSA() - Constructor for class
com.ibm.crypto.fips.provider.SHA1withDSA
Constructs a new instance of this class.
SHA1withRSA - class com.ibm.crypto.fips.provider.SHA1withRSA.
This class implements signature using SHA1 with RSA
SHA1withRSA() - Constructor for class
com.ibm.crypto.fips.provider.SHA1withRSA
Construct a blank RSA object.
SHA2 - class com.ibm.crypto.fips.provider.SHA2.
This class implements the Secure Hash Algorithm 2 (SHA-256) developed by the
National Institute of Standards and Technology along with the National Security
Agency.
SHA2() - Constructor for class com.ibm.crypto.fips.provider.SHA2
Standard constructor, creates a new SHA2 instance, allocates its buffers from
the heap.
SHA3 - class com.ibm.crypto.fips.provider.SHA3.

© Copyright IBM Corp. 2005 Page 36 of 39

This class implements the Secure Hash Algorithm 3 (SHA-384) developed by the
National Institute of Standards and Technology along with the National Security
Agency.
SHA3() - Constructor for class com.ibm.crypto.fips.provider.SHA3
Standard constructor, creates a new SHA3 instance, allocates its buffers from
the heap.
SHA5 - class com.ibm.crypto.fips.provider.SHA5.
This class implements the Secure Hash Algorithm 5 (SHA-512) developed by the
National Institute of Standards and Technology along with the National Security
Agency.
SHA5() - Constructor for class com.ibm.crypto.fips.provider.SHA5
Standard constructor, creates a new SHA5 instance, allocates its buffers from
the heap.
size() - Method in class com.ibm.crypto.fips.provider.IdentityDatabase
Returns the number of identities in the database
SystemIdentity - class com.ibm.crypto.fips.provider.SystemIdentity.
An identity with a very simple trust mechanism.
SystemIdentity(String, IdentityScope) - Constructor for class
com.ibm.crypto.fips.provider.SystemIdentity
Constructor for this class.
SystemSigner - class com.ibm.crypto.fips.provider.SystemSigner.
SunSecurity signer.
SystemSigner(String) - Constructor for class
com.ibm.crypto.fips.provider.SystemSigner
Construct a signer with a given name.
SystemSigner(String, IdentityScope) - Constructor for class
com.ibm.crypto.fips.provider.SystemSigner
Construct a signer with a name and a scope.

--

T
TDCNP - class com.ibm.crypto.fips.provider.TDCNP.
This class creates a DESede cipher with default mode CBC with no Padding.
TDCNP() - Constructor for class com.ibm.crypto.fips.provider.TDCNP
Creates an instance of DESede cipher with CBC mode and no Padding.
toString() - Method in class com.ibm.crypto.fips.provider.RSAPrivateKey
Answers a string containing a concise, human-readable description of the
receiver.
toString() - Method in class com.ibm.crypto.fips.provider.SHA1withDSA
Answers a string containing a concise, human-readable description of the
receiver.
toString() - Method in class com.ibm.crypto.fips.provider.DatawithDSA
Answers a string containing a concise, human-readable description of the
receiver.
toString() - Method in class com.ibm.crypto.fips.provider.RSAPrivateCrtKey

© Copyright IBM Corp. 2005 Page 37 of 39

Answers a string containing a concise, human-readable description of the
receiver.
toString() - Method in class com.ibm.crypto.fips.provider.IdentityDatabase
Answers a string containing a concise, human-readable description of the
receiver.
toString() - Method in class com.ibm.crypto.fips.provider.SystemIdentity
Answers a string containing a concise, human-readable description of the
receiver.
toString() - Method in class com.ibm.crypto.fips.provider.DHPrivateKey
Answers a string containing a concise, human-readable description of the
receiver.
toString() - Method in class com.ibm.crypto.fips.provider.SystemSigner
Answers a string containing a concise, human-readable description of the
receiver.
toString() - Method in class com.ibm.crypto.fips.provider.RSAPublicKey
Answers a string containing a concise, human-readable description of the
receiver.
toString() - Method in class com.ibm.crypto.fips.provider.DHPublicKey
Answers a string containing a concise, human-readable description of the
receiver.
toString() - Method in class com.ibm.crypto.fips.provider.DSAPublicKey
Answers a string containing a concise, human-readable description of the
receiver.
toString() - Method in class com.ibm.crypto.fips.provider.DSAPrivateKey
Returns a string containing a concise, human-readable description of the
receiver.

--

U
unpad(byte[], int, int) - Method in interface
com.ibm.crypto.fips.provider.Padding
Returns the index where padding starts.

--

X
X509Factory - class com.ibm.crypto.fips.provider.X509Factory.
This class defines a certificate factory for X.509 v3 certificates and X.509 v2
certificate revocation lists (CRLs).
X509Factory() - Constructor for class com.ibm.crypto.fips.provider.X509Factory
The constructor for this class.

--

© Copyright IBM Corp. 2005 Page 38 of 39

Z
zeroize() - Method in class com.ibm.crypto.fips.provider.RSAPrivateKey
This function zeroizes the key so that it isn't in memory
zeroize() - Method in class com.ibm.crypto.fips.provider.DESedeKey
This function zeroizes the key so that it isn't in memory
zeroize() - Method in class com.ibm.crypto.fips.provider.AESSecretKey
This function zeroizes the key so that it isn't in memory
zeroize() - Method in class com.ibm.crypto.fips.provider.RSAPrivateCrtKey
This function zeroizes the key so that it isn't in memory
zeroize() - Method in class com.ibm.crypto.fips.provider.DHPrivateKey
This function zeroizes the key so that it isn't in memory
zeroize() - Method in class com.ibm.crypto.fips.provider.RSAPublicKey
This function zeroizes the key so that it isn't in memory.
zeroize() - Method in class com.ibm.crypto.fips.provider.DHPublicKey
This function zeroizes the key so that it isn't in memory
zeroize() - Method in class com.ibm.crypto.fips.provider.DSAPublicKey
This function zeroizes the key so that it isn't in memory
zeroize() - Method in class com.ibm.crypto.fips.provider.DSAPrivateKey
This function zeroizes the key so that it isn't in memory

Notices

Java is a registered trademark of SUN. Inc.

AIX, z/OS, AS/400 and IBM are trademarks or registered trademarks of IBM
Corporation in the United States, other countries, or both.

HP-UX is a registered trademark Hewlet Packard, Inc

Microsoft, Windows, Windows NT, and the Windows logo are trademarks or
registered trademarks of Microsoft Corporation in the United States, other
countries, or both.

UNIX is a registered trademark of The Open Group in the United States and
other countries.

Linux is a registered trademark of Linus Torvalds.

Red Hat is a trademark of Red Hat, Inc.

SuSE is a registered trademark of SuSE AG

© Copyright IBM Corp. 2005 Page 39 of 39

Other company, product, and service names may be trademarks or service
marks of others.

© 2004 International Business Machines Corporation. All rights reserved. This
document may be freely reproduced and distributed in its entirety and without
modification.

