
Federal Information Processing Standard (FIPS) 140-2

Good Technology

Good FIPSCrypto

FIPS 140-2 Non-Proprietary Security Policy

January 05, 2007

©Good Technology, Inc.2006. All rights reserved.

2

Good, Good Technology, and the Good logo are trademarks of Good Technology,
Inc. in the United States and/or other countries. Good Technology, Inc., and its
products are not related to, sponsored by, or affiliated with Research In Motion
Limited. All other trademarks and service marks contained herein are the property
of their respective owners.

This document maybe freely reproduced and distributed whole and intact including
this Copyright Notice

3

4

DOCUMENT VERSION CONTROL

VERSION DATE AUTHOR (S) DESCRIPTION REASON FOR
CHANGE

1.0 11 Jan 2004 Prathaban Selvaraj
Good Technology

Initial Version

1.1 28 Aug 2006 Daphne Won
Good Technology

Made changes related
to adding Symbian
9.1.
Removed unnecessary
references to Desktop
Software

1.2 12 Sep 2006 Daphne Won
Good Technology

Updates based on
feedback from Ravi
Iyers (Security
Product Mgr at Good)

1.3 15 Sep 2006 Daphne Won
Good Technology

Main changes were
made on Sections 1
and 2. Section 7.5
(Cryptographic
Algorithms) was
added.

1.4 13 October 2006 Daphne Won
Good Technology

Updated configuration
management software
to be Perforce.

1.5 3 November
2006

Daphne Won
Good Technology

In Table 6,
FIPSCryptoSymbian.c
pp is used for Symbian
9.1

1.6 13 December
2006

Daphne Won
Good Technology

Updated the Symbian
algorithm certificate
numbers

1.7 05 January 2007 Daphne Won
Good Technology

Added original version
of the cert

5

6

TABLE OF CONTENTS

1. INTRODUCTION... 7

1.1 PURPOSE .. 7
ENABLES SOLUTIONS FROM GOOD TECHNOLOGY THAT REQUIRES ENCRYPTION.............. 7
1.2 REFERENCES .. 7

2. CRYPTOGRAPHIC MODULE SPECIFICATION... 7

3. CRYPTOGRAPHIC MODULE PORTS AND INTERFACES........................... 8

4. ROLES, SERVICES AND AUTHENTICATION... 9

4.1 ROLES .. 9
4.1.1 The Crypto-Officer Role ... 9
4.1.2 The User Role ... 10

4.2 SERVICES ... 11
4.2.1 Approved Mode Of Operation .. 13

4.3 AUTHENTICATION .. 13

5. PHYSICAL SECURITY .. 13

6. OPERATIONAL ENVIRONMENT... 14

7. CRYPTOGRAPHIC KEY MANAGEMENT.. 14

7.1 KEY GENERATION.. 14
7.2 KEY INPUT/OUTPUT ... 14
7.3 KEY STORAGE.. 14
7.4 KEY ZEROIZATION ... 14
7.5 CRYPTOGRAPHIC ALGORITHMS ... 15

8. EMI/EMC .. 15

9. SELF TESTS ... 15

10. MITIGATION OF OTHER ATTACKS .. 16

11. SECURE OPERATION ... 16

7

1. Introduction

1.1 Purpose

The Good FIPSCrypto cryptographic module is a Software Dynamic Link Library (DLL)
module that implements the Triple DES, AES, SHA-1 and HMAC-SHA-1 algorithms.
This non-proprietary Security Policy describes how the crypto module meets the security
requirements of FIPS 140-2 Level 1 and how to securely operate the module.

The cryptographic module enables solutions from Good Technology that require
encryption. The code which constitutes the cryptographic module is common to
Windows CE and Symbian platforms.

Enables solutions from Good Technology that requires encryption.

1.2 References

For more information on Good Technology and the GoodLink product visit
http://www.good.com.

Detailed information on the FIPS140-2 standard can be found at the NIST web site,
http://csrc.nist.gov/cryptval.

2. Cryptographic Module Specification

The Good FIPSCrypto cryptographic module is validated against FIPS 140-2 Level 1
with version 20040220 to run on the Windows CE operating system and version 4.9.1 to
run on the Symbian operating system. The module is classified as a multi-chip standalone
module. The logical cryptographic boundary contains the software modules that comprise

http://www.good.com/
http://csrc.nist.gov/cryptval

8

the FIPSCrypto dynamic link library. The physical boundary of the module is defined as
the enclosure of the handheld on which the module executes.

3. Cryptographic Module Ports And Interfaces

The physical ports to the cryptographic module are standard I/O ports found on the
handheld device such as a USB port, wireless radio, and Graphical Display controller.
The logical interface to the module is an Application Programming Interface (API). The
function calls, that represent the services provided by the module, act as the Control Input
Interface. The parameters to the API act as the Data Input Interface. The parameters
returned from the API act as the Data Output Interface. The Status Output interface is the
error code and return values provided by each function in the API.

Interface Logical Interface Physical Port

Data Input Parameters to the API Wireless Radio, Key Pad
controller, Graphical
Display Controller, USB
Port, IrDA port, SD slot
port, microphone port,
Bluetooth, WiFi

Data Output Parameters returned from the API Wireless Radio, Key Pad
Controller, Graphical
Display Controller, USB
port, SD slot port,
speaker/earpiece/headset
port,

Control Input Exported API calls Key Pad Controller,
Button Controller, USB
port, IrDA port

Status Output Error code and return values provided by
each function in the API

Wireless Radio, Graphical
Display Controller,
speaker/earpiece/headset
port, LED

Power N/A Battery port

Table 1. Ports And Interface Mapping

Interface Parameters

Data Input Key, Key Length, Algorithm Context, Plain text, Cipher-text,
Encode/Decode flag, IV, IV Length, Plain text Length, Cipher-text
Length, Padding Mode, Counter, Counter length, Hash Input Data, Hash

9

Input Data Length, Num Bytes, Buffer size

Data Output Cipher-text block, Algorithm Context, Plain text block, Context, Cipher-
text, Cipher-text Len, Plaintext, Plaintext Len, Digest, MAC value

Control Input Aes_enc_key, Aes_enc_blk, Aes_dec_Key, Aes_dec_blk, SetKey, SetIV,
SetCtr, Encode, Decode, getOutputLen, A_DES_EDE3_CBCEncryptInit,
A_DES_EDE3_CBCEncryptyUpdate,
A_DES_EDE3_CBCEncryptFinal, A_DES_EDE3_CBCDecryptInit,
A_DES_EDE3_CBCDecryptUpdate, A_DES_EDE3_CBCDecryptFinal,
A_SHAInit, A_SHAUpdate, A_SHAFinal, A_SHACopyContext,
SetKey, GetMAC, GetMAC_N

Status Output Getfipsenabled, Getfipstestsrun, Getfipstestspassed

CRYPTOERR_OK, CRYPTOERR_INVALIDENCODEKEY,
CRYPTOERR_INVALIDDECODEKEY,
CRYPTOERR_INVALIDKEY, CRYPTOERR_INVALIDDATA,
CRYPTOERR_INVALIDIV, CRYPTOERR_INVALIDPADDING,
CRYPTOERR_ENCODEFAIL, CRYPTOERR_DECODEFAIL,
CRYPTOERR_INVALIDCTR, CRYPTOERR_BUFFERTOOSMALL,
CRYPTOERR_FAIL, CRYPTOERR_INVALIDHMACKEY,
CRYPTOERR_CANCEL, AE_OUTPUT_LEN, AE_INPUT_LEN

Table 2. Interface And Parameter Mapping

4. Roles, Services and Authentication

4.1 Roles

The cryptographic module is a single operator software module that supports two
authorized roles.

Roles
User Role
Crypto Officer Role

Table 3. Roles

4.1.1 The Crypto-Officer Role

The operator takes on the role of a crypto-officer to perform tasks like module installation
and zeroization of the module. Other tasks performed by the crypto-officer include Key
Entry, initiate the power-on self-tests on demand and check the status of the

10

cryptographic module. The Crypto officer role has authorized access to the Triple DES,
AES, SHA-1 and HMAC-SHA-1 algorithms.

4.1.1.1 The Crypto Officer Guide

The Crypto Officer installs the cryptographic module onto the handheld device in a
secure environment. Keys are installed onto the handheld as a part of this process. Upon
completion of the installation process the module performs its power-on self-tests and
enters an initialized state or error state. The crypto officer can then request services from
the module. The Crypto Officer has the exclusive rights to perform Key Entry operations.

4.1.2 The User Role

An operator can assume the User Role and access the cryptographic algorithms provided
in the module, which are Triple DES, AES, SHA-1 and HMAC-SHA-1.

4.1.2.1 The User Guide

The User can request services from the cryptographic module using the module’s Logical
interface. The User Role has authorized access to the Triple DES, AES, SHA-1 and
HMAC-SHA-1 algorithms. The User can also initiate self-tests and check the status of
the module. The cryptographic module provides information about the status of a
requested operation to the user through the Status Output Interface. The following status
codes are defined for the module.

Status Codes Information
CRYPTOERR_OK Operation completed successfully.
CRYPTOERR_INVALIDENCODEKEY The key used for performing encryption

operations is invalid.
CRYPTOERR_INVALIDDECODEKEY The key used for performing decryption

operations is invalid.
CRYPTOERR_INVALIDKEY The key used for performing cryptographic

operations is invalid.
CRYPTOERR_INVALIDDATA The input data passed to the cryptographic

module is invalid.
CRYPTOERR_INVALIDIV The Initialization Vector input to the

module is invalid.
CRYPTOERR_INVALIDPADDING The padding of the encrypted blob is

invalid.
CRYPTOERR_ENCODEFAIL The encryption operation failed.
CRYPTOERR_DECODEFAIL The decryption operation failed.
CRYPTOERR_INVALIDCTR The Counter value input to the module is

invalid.
CRYPTOERR_BUFFERTOOSMALL The size of the buffer passed to the module

11

is too small to perform the requested
operation.

CRYPTOERR_INVALIDHMACKEY The key used by the HMAC-SHA-1 is
invalid.

CRYPTOERR_CANCEL The module is in an error state. Check if
the power-on self-tests have passed.

CRYPTOERR_FAIL The module is in an error state. Check if
the power-on self-tests have passed.

AE_CANCEL The module is in an error state. Check if
the power-on self-tests have passed.

AE_OUTPUT_LEN The size of the buffer passed to the module
is too small to perform the requested
operation.

AE_INPUT_LEN The size of the input data is invalid.
Table 4. Status Codes

The operator of the module can also determine its status from the debugger screen. Enter
the debugger screen by typing ‘DEBUG’ on the keypad and then type ‘fips’ on the
command line and <ENTER>. Each of the modules’ API functions is tested and the
results are printed to the screen.

4.2 Services

The services provided by the cryptographic module are listed in the following table.

Services Role (CO, User, Both) Access (R/W/X)
AES Encryption CO, User X
AES Encryption:
Key Entry

CO X

AES Decryption CO, User X
AES Decryption:
Key Entry

CO X

Triple DES Encryption CO, User X
Triple DES Encryption:
Key Entry

CO X

Triple DES Decryption CO, User X
Triple DES Decryption:
Key Entry

CO X

SHA-1 Hashing CO, User X
HMAC-SHA-1 CO, User X
HMAC-SHA-1:
Key Entry

CO X

Show Status CO, User X

12

Perform Self tests CO, User X
Table 5. Services, Roles, Access

The following table presents a mapping of each cryptographic service provided by the
module to its logical interface and the role assumed by the operator of the module to
request those services.

Service Logical Interface Role
AES Encryption aescrypt.c : aes_enc_blk

aescbc.cpp : Encode
aescbc.cpp : SetIV
aescbc.cpp : getContext
aesctr.cpp : SetCtr
aesctr.cpp : getContext
aesctr.cpp : Encode
aesctr.cpp : getOutputLen

User, CO*

AES Encryption:
Key Entry

aescrypt.c : aes_enc_key
aescbc.cpp : SetKey
aesctr.cpp : SetKey

CO

AES Decryption aescrypt.c : aes_dec_blk
aescbc.cpp : Decode
aescbc.cpp : SetIV
aescbc.cpp : getContext
aesctr.cpp : SetCtr
aesctr.cpp : getContext
aesctr.cpp : Encode
aesctr.cpp : getOutputLen

User, CO

AES Decryption:
Key Entry

aescrypt.c : aes_dec_key
aescbc.cpp : SetKey
aesctr.cpp : SetKey

CO

TDES Encryption:
Key Entry

desedee.cpp : A_DES_EDE3_CBCEncryptInit User

TDES Encryption desedee.cpp : A_DES_EDE3_CBCEncryptUpdate
desedee.cpp : A_DES_EDE3_CBCEncryptFinal

User, CO

TDES Decryption:
Key Entry

deseded.cpp : A_DES_EDE3_CBCDecryptInit CO

TDES Decryption deseded.cpp : A_DES_EDE3_CBCDecryptUpdate
deseded.cpp : A_DES_EDE3_CBCDecryptFinal

User, CO

SHA-1 Hashing gdsha.cpp : A_SHAInit
gdsha.cpp : A_SHAUpdate
gdsha.cpp : A_SHAFinal
gdsha.cpp : A_SHACopyContext

User, CO

13

HMAC-SHA-1 Sha1HMAC.cpp : GetMAC
Sha1HMAC.cpp : GetMAC_N

User, CO

HMAC-SHA-1:
Key Entry

Sha1HMAC.cpp : SetKey CO

Show Status For Windows CE:
FipsCryptoPPC.cpp : getfipsenabled
FipsCryptoPPC.cpp : getfipstestspassed
FipsCryptoPPC.cpp : getfipstestsrun
For Symbian:
FipsCryptoSymbian.cpp : getfipsenabled
FipsCryptoSymbian.cpp : getfipstestspassed
FipsCryptoSymbian.cpp : getfipstestsrun

User, CO

Self Tests N/A User, CO
Table 6. Services And Logical Interface Mapping

*CO = Crypto Officer Role

4.2.1 Approved Mode Of Operation

The module only provides an Approved Mode of operation. No special configuration is
required to operate the Module in a FIPS 140-2 mode. In this mode all authorized roles
can call the FIPS 140-2 approved algorithms and services.

4.3 Authentication

The cryptographic module is evaluated at FIPS 140-2 Level 1 and does not provide role
authentication for the authorized roles. The operator assumes these roles implicitly when
invoking these services.

5. Physical Security

The cryptographic module is a software module that operates on the Microsoft Windows
CE 4.2 and Symbian 9.1 platforms. The Windows CE 4.2 and Symbian 9.1 handheld
devices use production grade components.

14

6. Operational Environment
The operational environment consists of Windows CE 4.2 and Symbian 9.1, pre-emptive
multi-tasking operating systems running on ARM-based processors.

7. Cryptographic Key Management

7.1 Key Generation

The cryptographic module does not perform key generation.

7.2 Key Input/Output

The keys are input into the module in plain-text form by the crypto officer. Keys are not
output from the module.

7.3 Key Storage

The module does not provide persistent storage for the keys used by the algorithms. The
HMAC-SHA-1 key used for the integrity check is stored in the module.

7.4 Key Zeroization

The keys are stored in memory on the device during the execution of an
encryption/decryption or HMAC-SHA-1 calculation. At the completion of the calculation
the keys are zeroized.

The other key is the HMAC-SHA-1 key used to perform the integrity check. The operator
can zeroize this key by removing the user data from the handheld. Selecting this option
for a handheld running a FIPS certified crypto module would cause the module to be
zeroized. The operator may also zeroize this key by hard resetting the device on which
the cryptographic module is operating. On Symbian 9.1, the operator may also zeroize
this key by uninstalling the module.

15

7.5 Cryptographic Algorithms

The algorithms implemented by this module for Windows CE are listed below.

Algorithm Certificate Number
Triple-DES (Triple Data Encryption
Standard)

240

AES (Advanced Encryption Standard) # 134
SHS (Secure Hash Algorithm) (SHA-1) # 217
HMAC-SHA-1 (Keyed-Hashing Message
Authentication Code)

217 (vendor certified)

The algorithms implemented by this module for Symbian are listed below.

Algorithm Certificate Number
Triple-DES (Triple Data Encryption
Standard)

491

AES (Advanced Encryption Standard) # 477
SHS (Secure Hash Algorithm) (SHA-1) # 545
HMAC-SHA-1 (Keyed-Hashing Message
Authentication Code)

234

8. EMI/EMC

The cryptographic module is a software module. The module runs on the Windows CE
4.2 and Symbian 9.1 devices. The tested devices meet applicable Federal Communication
Commission (FCC) Electromagnetic Interference and Electromagnetic Compatibility
requirements for business use.

9. Self Tests

Power On Tests

The cryptographic module performs algorithmic self-tests at startup time to ensure that
the module is functioning properly. It also performs an integrity check using an approved
HMAC-SHA-1 algorithm to validate the integrity of the module. These tests are initiated
without user intervention at startup time or can be initiated by the user by resetting the
device. The self-tests consist of a set of known answer tests to validate the working of the
Triple DES, AES, SHA-1 and HMAC-SHA-1 algorithms.

16

10. Mitigation Of Other Attacks

The module is not designed to mitigate any other attacks.

11. Secure Operation

A configuration management system is set up using Perforce to identify each component
of the cryptographic module including documentation using a unique identification
number. The crypto-officer installs the cryptographic module in FIPS 140-2 mode in a
secure environment. The module implements only FIPS 140-2 approved algorithms and
hence all cryptographic services provided by the module are FIPS 140-2 compliant. All
the critical security functions performed by the module are tested at start-up or on
demand. The module’s integrity is also tested to prevent tampering, using an approved
HMAC-SHA-1 algorithm.

	Good Technology
	1.Introduction
	1.1Purpose
	Enables solutions from Good Technology that requires encryption.
	1.2References

	2.Cryptographic Module Specification
	3.Cryptographic Module Ports And Interfaces
	4.Roles, Services and Authentication
	4.1Roles
	Roles
	4.1.1The Crypto-Officer Role
	4.1.2The User Role

	4.2Services
	Services
	Role (CO, User, Both)
	Access (R/W/X)
	Approved Mode Of Operation

	4.3Authentication

	5.Physical Security
	6.Operational Environment
	7.Cryptographic Key Management
	7.1Key Generation
	7.2Key Input/Output
	Key Storage
	7.4Key Zeroization
	7.5Cryptographic Algorithms

	8.EMI/EMC
	9.Self Tests
	Power On Tests

	10. Mitigation Of Other Attacks
	11. Secure Operation

