

Page © Copyright IBM Corp. 2004

IBM Java JSSE FIPS 140-2 Cryptographic Module

Security Policy

IBM JAVA JSSE FIPS 140-2
Cryptographic module

March 2004

Revision: 1.1

 Status: Final

First Edition (March 2004)
This edition applies to the First Edition of the IBMJSSEFIPS – Security Policy and to all subsequent versions until
otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2004.
All rights reserved. This document may be freely reproduced and distributes in its entirety and without modification.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems in the US
and other countries

© Copyright IBM Corp. 2004 Page 2 of 40

© Copyright IBM Corp. 2004 Page 3 of 40

Table of Contents

Introduction..5
Operation of the Cryptographic Module ..6

Module Components..6
Module description ..7

Cryptographic Module Specification ...7
HASH Functions..10
CIPHER Functions...10
Public Key..10
Random Number Generators ...11

Cryptographic Module Interfaces...11
Cryptographic Module Services...12
Cryptographic Module Roles ...13

Roles ..13
Cryptographic Module Key Management..13

Key Storage..14
Key generation ...14
Key Protection..14
Key Generation ..14
Key zeroization ..14
Key Import/Export ...14

Cryptographic Module Self Tests ..15
Cryptographic Module Security Rules...15

Operating System...15
Java object model...15
User Guidance Programming practices..16

References..17
Appendix A: Function List ..18
Notices ...41

© Copyright IBM Corp. 2004 Page 4 of 40

Introduction

The IBM® Java® JSSE (Java Secure Sockets Extension) FIPS 140-2
Cryptographic Module (IBMJSSEFIPS) for Multi-platforms is a scalable, multi-
purpose Secure Sockets provider that supports only FIPS approved TLS cipher
suites via the Java2 Application Programming Interfaces (APIs). The IBM Java
JSSE FIPS provider (hereafter referred to as IBMJSSEFIPS) comprises the
following Federal Information Processing Standards (FIPS) 140-2 [1] compliant
components:

• IBMJSSEFIPS for Solaris®, Windows®, AIX®, z/OS®, AS/400®, Linux®
(Red Hat and SuSE®)

In order to meet the requirements set forth in the FIPS publication 140-2, the
encryption algorithms utilized by the IBMJSSEFIPS provider are isolated into the
IBMJSSEFIPS provider cryptographic module (hereafter referred to as
cryptographic module), which is accessed by the product code via the Java
JSSE framework APIs. As the IBMJSSEFIPS provider utilizes the cryptographic
module in an approved manner, the product complies with the FIPS 140-2
requirements when properly configured.

This document focuses on the features and security policy provided by the
cryptographic module, and describes how the module is designed to meet FIPS
140-2 compliance.

© Copyright IBM Corp. 2004 Page 5 of 40

Operation of the Cryptographic Module

The cryptographic module must be utilized in a compliant manner, as described
herein, to maintain FIPS 140-2 validation. It is the application and application
administrator’s responsibility to understand and deploy the proper configuration
for compliance.

The module is available as a software module on multiple platforms. The
platforms certified are outlined in the Cryptographic Module Specification section
of this document. The module must be used in one of the specified
environments.

An application utilizes the module through the interfaces specified in the
Cryptographic Module Interfaces section of this document. A list of all services
provided through these interfaces may be found in the Cryptographic Module
Services section of this document.

The roles govern which of the services are available for operator use. The
Cryptographic Module Roles section of this document details the access control
policy of the module.

The module can provide for protection of sensitive data, such as keys or
contexts. Information on key protection is outlined in the Cryptographic Module
Key Management section. When the module is initialized, it validates its own
integrity, and verifies the algorithms are functioning correctly. The Cryptographic
Module Self-Tests section details the internal tests performed by the module.

The modules physical security relies on the physical security of the computer.
Steps to deploy and maintain this secure environment are outlined in the
Cryptographic Module Physical Security section of this document.

Module Components

The following table lists the module components:

Type Name Release Date Delivery
Software IBM JSSE FIPS 140-2 1.1

© Copyright IBM Corp. 2004 Page 6 of 40

Cryptographic Module JAR file
(ibmjssefips.jar)

Documentation IBM JSSE FIPS 140-2
Cryptographic Module Security
Policy

1.1

Table 1: Module Component List for all platforms

Module description

IBMJSSEFIPS is an SSL (Secure Sockets Layer) interface that provides API’s to
allow users to write SSL applications. IBMJSSEFIPS uses an embedded FIPS-
Approved module. IBM SSLite in Java (Certificate #406) for the actual SSL
interfaces.

IBM SSLite in Java is a TLS (Transport Layer Security) V1.0 protocol
implementation including PKI (Public Key Infrastructure) functionality for the
hand-shake, in Java. This implementation, in turn relies exclusively on the
internal FIPS-Approved IBM CryptoLite in Java module for all cryptographic
functionality. See the IBM SSLite in Java Security Policy for more information.

Cryptographic Module Specification

An application utilizes the module through the interfaces specified in the
Cryptographic Module Interfaces section of this document. A list of the basic
services provided through these interfaces may be found in the Cryptographic
Module Services section of this document. A complete list of all services and
details on their usage can be found in the Java Secure Socket Extension (JSSE)
API User's Guide and the associated IBMJSSEProvider Class Documentation.

© Copyright IBM Corp. 2004 Page 7 of 40

The module was tested and certified to the following FIPS 140-2 defined levels:

Overall Security Level 1
Cryptographic
Module

Security Level 1

Ports and Interfaces Security Level 1
Roles, Services, and
Authentication

Security Level 1

Finite State Model Security Level 1
Physical Security Security Level 1
Operational
Environment

Security Level 1

Key Management Security Level 1
EMI/EMC Security Level 1
Self-Tests Security Level 1
Design Assurance Security Level 1
Mitigation of Other
Attacks

N/A

Table 2: FIPS validation level

The IBMJSSEFIPS Module is packaged in a single Java Archive File, which
contains all the code for the module. IBMJSSEFIPS runs upon many platforms
including Microsoft Windows 95 , Microsoft Windows 98 , Microsoft Windows
Me  and Microsoft Windows NT , Solaris , HP-UX , Linux , z/OS, AS/400
and AIX ; however, the IBMJSSEFIPS Module was not tested or validated upon
each of these platforms as part of this effort.

As outlined in G.5 of the Implementation Guidance for FIPS 140-2, the module
maintains its compliance on other operating systems, provided:

• The GPC uses the specified single user operating system/mode specific
on the validation certificate, or another compatible single user operating
system, and

• The source code of the software cryptographic module does not require
modification prior to the recompilation to allow porting to another
compatible single user operating system.

Since the IBMJSSEFIPS module is a pure Java implementation it should be able
to run unmodified on any system that supports a Java Runtime of at least
Version 1.3.1. Testing and validating the IBMJSSEFIPS package on the

© Copyright IBM Corp. 2004 Page 8 of 40

following representative Windows and Unix platforms will demonstrate the above
requirements:

IBMJSSEFIPS was tested and validated on a machine running the Microsoft
Windows 2000 Advanced Server SP4 with JVM 1.4.1 and Microsoft Windows
2000 Professional with Service Pack 3 with JVM 1.3.1 03 and JVM 1.4.1 04.
The software module maintains compliance when running on the Microsoft
Windows 95 , Microsoft Windows 98, Microsoft Windows Me, Microsoft
Windows NT, Microsoft Windows 2000, and Microsoft Windows XP operating
systems, as well as, JVMs at the 1.4.x level of those operating systems.

IBMJSSEFIPS was tested and validated on a machine running the AIX  5.2
operating system with JVM 1.3.1 and JVM 1.4.1. The software module maintains
compliance when running on other versions of AIX, as well as, JVMs at the
1.4.x level of those AIX versions.

IBMJSSEFIPS was tested and validated on a machine running the Solaris 5.8
operating system with JVM 1.3.1 and JVM 1.4.1. The software module maintains
compliance when running on other UNIX based operating systems, such as HP-
UX, as well as, JVMs at the 1.4.x level of those operating systems.

IBMJSSEFIPS was tested and validated on a machine running the Red Hat
Linux Advanced Server 2.1 operating system with JVM 1.4.1 05. The software
module maintains compliance when running on other Linux based operating
systems, as well as, JVMs at the 1.3.1 or 1.4.x level of those operating systems.

IBMJSSEFIPS was tested and validated on a machine running the SuSE Linux
Enterprise Server 8.0 operating system with JVM 1.4.1 05. The software module
maintains compliance when running on other Linux based operating systems, as
well as, JVMs at the 1.3.1 or 1.4.x level of those operating systems.

IBMJSSEFIPS was tested and validated on a machine running the z/OS V1R4
operating system with JVM 1.4.1. The software module maintains compliance
when running on other z/OS operating system releases, as well as, JVMs at the
1.3.1 or 1.4.x level on those operating system releases.

IBMJSSEFIPS was tested and validated on a machine running the IBM
Operating System/400 V5R2M0 operating system with JVM 1.4.1. The software
module maintains compliance when running on other IBM Operating System/400

© Copyright IBM Corp. 2004 Page 9 of 40

operating system releases, as well as, JVMs at the 1.3.1 or 1.4.x level on those
operating system releases.

The module supports the following Approved algorithms:

This module uses the encryption algorithms implemented in the internal IBM
SSLite in Java source code base. Please see section 5.3 of the SSLite Security
policy document for all the supported algorithms. The list below is the list of
algorithms that IBMJSSEFIPS uses when it implements the SSL interfaces.

HASH Functions

Algorithm Specification FIPS
Approved

SHA FIPS180-1
Hash algorithm; hash size: 20 bytes; block size: 64
bytes.

Yes

 Table 3: Supported Hash Functions

CIPHER Functions

Algorithm Specification & Description FIPS
Approved

DES,
DES-CBC

FIPS 46-3
Symmetric block cipher; block size: 8 bytes; key
size: 56 bits.

For use in legacy systems only.

Yes

3DES,
3DES-CBC

FIPS 46-3
Triple DES has 112/168 bits key length depending
on type of key.

Yes

AES,
AES-CBC

FIPS 197
AES has 128 to 256 bits key length.

Yes

 Table 4: Supported Cipher Functions

Public Key

Algorithm Specification FIPS
Approved

RSA
Sign/Verify

Public key encryption/signature scheme. Typical
key/data sizes: 512, 768, 1024 (typical), 2048 bits.
PKCS#1

Yes

RSA Encrypt / RSA specification and padding scheme: No

© Copyright IBM Corp. 2004 Page 10 of 40

Decrypt PKCS#1

Diffie-Hellman Public key crypto system. Typical key/data sizes:
512, 768, 1024 (typical), 2048 bits. Used for key
agreement.

No

 Table 5: Supported Public Key Functions

Random Number Generators

Algorithm Specification FIPS
Approved

PSEUDO Random
Number Generator

FIPS 186-2
ANSI X9.31 1998
.

Yes

Universal Software
Based Random
Number Generator

Patented by IBM,
EC Pat.No. EP1081591A2,
The random number generator works reliably
on variety of platforms without exploiting
platform specific features. Entropy
evaluation through statistical analysis.
Performance: 20-1000 bits/seconds (Used to
seed the Approved PRNG in FIPS mode)

No

 Table 6: Supported Random Number Generators

The other Approved and non-Approved algorithms implemented by IBM
CryptoLite in Java are not accessible directly from IBMJSSEFIPS. The
IBMJSSEFIPS jar file has been obfuscated to not allow this access.

Cryptographic Module Interfaces

The cryptographic module is classified as a “multi-chip standalone unit” for FIPS
140-2 purposes. Thus, the module’s physical interfaces consist of those found as
part of the computer’s hardware, such as the keyboard, mouse, disk drive, CD
drive, network adapters, serial and USB ports, monitor, speakers, etc. The
module’s logical interface is provided through the documented API.

© Copyright IBM Corp. 2004 Page 11 of 40

Cryptographic Module Services
The module services are accessible from Java language programs through an
Application Program Interface (API). The interface is defined in the Java Secure
Socket Extension (JSSE) API User's Guide and associated IBMJSSEProvider
Class Documentation with the restrictions outlined in the User Guidance section
of this document.

This cryptographic module only supports the TLS protocol and the following
cipher suites:

SSL_RSA_WITH_DES_CBC_SHA (hex number 0009),

SSL_RSA_FIPS_WITH_DES_CBC_SHA (hex number FEFE),

SSL_RSA_WITH_3DES_EDE_CBC_SHA (hex number 000A), and

SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA (hex number FEFF)

SSL_RSA_WITH_AES_128_CBC_SHA (hex number 002F)

SSL_RSA_WITH_AES_256_CBC_SHA (hex number 0035)

SSL_DHE_RSA_WITH_AES_128_CBC_SHA (hex number 0033)

SSL_DHE_RSA_WITH_AES_256_CBC_SHA (hex number 0039)

SSL_DHE_RSA_WITH_DES_CBC_SHA (hex number 0015)

SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA (hex number 0016)

SSL_DHE_DSS_WITH_AES_128_CBC_SHA (hex number 0032)

SSL_DHE_DSS_WITH_AES_256_CBC_SHA (hex number 0038)

SSL_DHE_DSS_WITH_DES_CBC_SHA (hex number 0012)

SSL_RSA_EXPORT1024_WITH_DES_CBC_SHA (hex number 0062)

SSL_RSA_EXPORT_WITH_DES40_CBC_SHA (hex number 0008)

SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA (hex number 0014)

SSL_DHE_DSS_EXPORT1024_WITH_DES_CBC_SHA (hex number 0063)

SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA (hex number 0011)

SSL_DH_anon_WITH_AES_128_CBC_SHA (hex number 0034)

SSL_DH_anon_WITH_AES_256_CBC_SHA (hex number 003A)

SSL_DH_anon_WITH_DES_CBC_SHA (hex number 001A

SSL_DH_anon_WITH_3DES_EDE_CBC_SHA (hex number 001B

SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA (hex number 0019)

© Copyright IBM Corp. 2004 Page 12 of 40

Cryptographic Module Roles

This module makes use of the functions in the SSLite module. The roles below
are as defined in the SSLite Security Policy section 6.1.

Roles

The IBMJSSEFIPS module supports two roles, Crypto Officer role and a user
role.

• ROLE_CO: The Crypto Officer Role is purely an administrative role and
does not involve the use of any of the modules cryptographic services.
The role is not explicitly authenticated but assumed implicitly on
implementation of the modules installation and usage sections defined in
the security rules section.

• ROLE_USER: The User Role has access to all of the modules services.

The role is not explicitly authenticated but assumed implicitly on access of
any of the modules services.

Role Type of Authentication Authentication Data
Cryptographic Officer
Role

None None

User Role None None
Table 7: Roles and Required Identification and Authentication

Authentication
Mechanism

Strength of Mechanism

There are no role or user
authentication mechanisms

Not Applicable

Table 8: Strengths of Authentication Mechanisms

Cryptographic Module Key Management

This module makes use of the functions in the SSLite module. The
management of cryptographic keys, as defined below, is in the SSLite Security
Policy section 6.1.

© Copyright IBM Corp. 2004 Page 13 of 40

Key Storage
The IBMJSSEFIPS module does not provide long-term cryptographic key
storage. If an application program makes use of an IBMJSSEFIPS service to
implement cryptographic key storage functionality, it is a responsibility of the
application program developers to ensure FIPS140-2 compliance of key storing
techniques they implement.

Key generation
IBMJSSEFIPS provides protocol services for TLSv1.0. This protocol involves the
generation of key material based on elements within the handshake protocol.
TLSv1.0 depends on SHA-1 for the generation of key material.

Key Protection
The management and allocation of memory is the responsibility of the operating
system. Each instance of the cryptographic module is self-contained within a
process space. All keys are associated with the User role.

Key Generation
Key generation is handled using the IBM SSLite in Java module that in turn uses
the IBM CryptoLite in Java subsystem that uses a FIPS approved RNG algorithm
that is based on SHA-1. The RNG has a maximum number of internal states of
2^160, this being limited by the compression function in SHA-1. The RSA key
generation algorithms use the RNG engine seeded with 20 bytes of true random
data. This true random generator is based on IBM patented technology where
statistical analysis used to estimate the entropy of the clock jitter. The internal
RNG engine is enhanced using an automatic reseeding policy that insert a
random byte every 128 bytes of output if more than 30 seconds passed since
last being reseeded.

Key zeroization
Key objects are zeroed and any associated data discarded when the key object
is garbage collected through the finalizer method. The IBM SSLite in Java uses
the IBM CryptoLite in Java sub-module to provide an additional mechanisms
which helps to ensure key zeroization through a dispose method.

Key Import/Export
The IBMJSSEFIPS module provides a series of services for applications to
access cryptographic material contained within various long-term storage
elements or tokens. These key repositories and tokens are outside of
IBMJSSEFIPS’s cryptographic boundary. The IBMJSSEFIPS module
temporarily holds and uses key material on behalf of the calling applications and
processes. Key material imported from long-term storage is stored internally in
token key rings. This temporary internal storage of key material and its
subsequent use is on behalf of the calling applications.

IBMJSSEFIPS supports the following a token type only.

© Copyright IBM Corp. 2004 Page 14 of 40

Java KeyStore is a database of private keys and their associated
certificates or certificate chains. The certificate chains are used in
authenticating end entity certificates. The Java Cryptography Architecture
(JCA) provides extensible architecture to manage keys. This architecture
is embodied in java.security as a KeyStore. The Java KeyStore follows
the existing JCA architecture, which provides a framework for
implementations of a KeyStore.

Cryptographic Module Self Tests
IBMJSSEFIPS relies exclusively on the embedded SSLite module for all FIPS-
required self-tests, which in turn, are performed by the FIPS-Approved IBM
CryptoLite in Java module embedded within SSLite. See section 5.5 of the
SSLite Security Policy for more information.

Cryptographic Module Security Rules

Operating System
The cryptographic module is dependant on the operating system environment
being set up in accordance with FIPS 140-2 specifications. This includes that
the host operating system be restricted to a single operator mode. An additional
requirement for this cryptographic provider is the availability of a valid
commercial grade installation of an IBM Java JRE 1.3.1 JVM or higher.

Java object model

The use of Java objects within the cryptographic module. In Java each
cryptographic object is unique. Thus when an application generates a
cryptographic object for use the object is unique to that instance of the
application. In this regard other processes have no access to that object and
can therefore not interrupt or gain access to the information or activities
contained within that object. In this way the cryptographic module protects the
single users control of the cryptographic activities and data.

As the Java architecture creates objects that are unique to the application, this
allows for “single” user access to the cryptographic operations and data. It is
recommended that an application not create static objects. Static objects are
shared in the Java architecture and the creation of a static object would be
counter to the unique object method of controlling access and data.

© Copyright IBM Corp. 2004 Page 15 of 40

User Guidance Programming practices

This section contains guidance for application programmers to avoid practices
that could potentially compromise the secure use of this cryptographic module.

• Statics – To ensure that each cryptographic object is unique and
accessible only by the individual user, it is important not to use static
objects, as all users of the JVM share these objects.

As the Java architecture creates objects that are unique to the application,
this allows for “single” user access to the cryptographic operations and
data. It is recommended that an application not create static objects.
Static objects are shared in the Java architecture and the creation of a
static object would be counter to the unique object method of controlling
access and data.

• The program must insure that only the IBM JSSE interfaces are used that
documented in the Java Secure Socket Extension (JSSE) API User's
Guide and associated IBMJSSEProvider Class Documentation based on
the level of the JVM that the IBMJSSEFIPS provider is running under.

• The classes of this provider should not be called directly (i.e. the
com.ibm.fips.* classes). Only use the standard extension API interfaces
documented in the Java Secure Socket Extension (JSSE) API User's
Guide and associated IBMJSSEProvider Class Documentation at the JVM
level that the IBMJSSEFIPS provider is running on.

• Any tokens used for storing private cryptographic keys should be

password protected. The password should follow generally accepted
guidelines for password security. All soft tokens should be configured
local to the computer.

• Only the TLS protocol is supported.

• If an application wishes to use the defaults for creating an SSL session,
they must set the following in the JVMs java.security file:
ssl.SocketFactory.provider=com.ibm.fips.jsse.JSSESocketFactory
ssl.ServerSocketFactory.provider=
com.ibm.fips.jsse.JSSEServerSocketFactory

• The provider name to be used with this JSSE provider is
com.ibm.fips.jsse.IBMJSSEFIPSProvider.

© Copyright IBM Corp. 2004 Page 16 of 40

References

[1] National Institute of Standards and Technology. May 2001. Security
Requirements for Cryptographic Modules. Federal Information Processing
Standards Publication 140-2.

[2] National Institute of Standards and Technology. November 2001. AES Key
Wrap Specification. Internet. 22 April 2002.
http://csrc.nist.gov/encryption/kms/key-wrap.pdf

[3] IBM CryptoLite in Java module. FIPS 140-2 Validated - Certificate #354.

[4] IBM SSLite in Java module. FIPS 140-2 Validate – Certifcagte #406.

© Copyright IBM Corp. 2004 Page 17 of 40

Appendix A: Function List
The Cryptographic module has no direct user interfaces. This module is a JSSE
provider and the interface into it is through the JSSE framework APIs only. The
program must insure that only the IBM JSSE interfaces are used that are
documented in the Java Secure Socket Extension (JSSE) API User's Guide and
associated IBMJSSEProvider Class Documentation based on the level of the
JVM that the IBMJSSEFIPS provider is running under.

In a J2SDK version 1.3.1 , the JSSE reference implementation classes and
interfaces were provided in the com.ibm.net.ssl package.

Now that JSSE has been integrated into the J2SDK, v 1.4. The classes formerly
in com.ibm.net.ssl have been promoted to the javax.net.ssl package and are now a
part of the standard JSSE API.

If you wish to use the HTTPS protocol handler, you must set the property
java.protocol.handler.pkgs. In 1.3.x, the https protocol handler is:
com.ibm.net.ssl.internal.www.protocol and in 1.4.x, the https protocol handler
is: com.ibm.net.ssl.www.protocol. For example to set the HTTPS handler for
1.4.x:
 properties.put("java.protocol.handler.pkgs", "com.ibm.net.ssl.www.protocol");

For compatibility purposes the com.ibm.net.ssl classes and interfaces still exist, but
have been deprecated. Applications written using them can run in the J2SDK, v
1.4 without being recompiled. This may change in a future release; these
classes/interfaces may be removed. Thus, all new applications should be written
using the javax classes/interfaces.

For now, applications written using the com.ibm.net.ssl API can utilize either JSSE
1.0.2 providers (ones using com.ibm.net.ssl) or JSSE providers written for the
J2SDK, v 1.4 (ones using the javax API). However, applications written using the
JSSE API in the J2SDK, v 1.4 can only utilize JSSE providers written for the
J2SDK, v 1.4. This new release contains some new functionality and attempting
to access such functionality on a provider that doesn't supply it wouldn't work.
IBMJSSE, provided with the J2SDK from IBM, is a provider written using the javax
API.

The following list are the Framework API’s and are only provided for reference
and are not part of the IBMJSSEFIPS module:

A

© Copyright IBM Corp. 2004 Page 18 of 40

addHandshakeCompletedListener(HandshakeCompletedListener) - Method
in class javax.net.ssl.SSLSocket this registers an event listener to receive
notifications that an SSL handshake has completed on this connection.

C

canonizeString(String) - Method in class com.ibm.net.ssl.www.ParseUtil
Returns a canonical version of the specified string.

checkClientTrusted(X509Certificate[], String) - Method in interface
javax.net.ssl.X509TrustManager
Given the partial or complete certificate chain provided by the peer, build a
certificate path to a trusted root and return if it can be validated and is trusted for
client SSL authentication based on the authentication type.

checkServerTrusted(X509Certificate[], String) - Method in interface
javax.net.ssl.X509TrustManager
Given the partial or complete certificate chain provided by the peer, build a
certificate path to a trusted root and return if it can be validated and is trusted for
server SSL authentication based on the authentication type.

chooseClientAlias(String[], Principal[], Socket) - Method in interface
javax.net.ssl.X509KeyManager
Choose an alias to authenticate the client side of a secure socket given the
public key type and the list of certificate issuer authorities recognized by the peer
(if any).

chooseClientAlias(String, Principal[]) - Method in interface
com.ibm.net.ssl.X509KeyManager
Deprecated. Choose an alias to authenticate the client side of a secure socket
given the public key type and the list of certificate issuer authorities recognized
by the peer (if any).

chooseServerAlias(String, Principal[]) - Method in interface
com.ibm.net.ssl.X509KeyManager
Deprecated. Choose an alias to authenticate the server side of a secure socket
given the public key type and the list of certificate issuer authorities recognized
by the peer (if any).

chooseServerAlias(String, Principal[], Socket) - Method in interface
javax.net.ssl.X509KeyManager
Choose an alias to authenticate the server side of a secure socket given the
public key type and the list of certificate issuer authorities recognized by the peer
(if any).

© Copyright IBM Corp. 2004 Page 19 of 40

createServerSocket() - Method in class javax.net.ServerSocketFactory
Returns an unbound server socket.

createServerSocket(int) - Method in class javax.net.ServerSocketFactory
Returns a server socket bound to the specified port.

createServerSocket(int, int) - Method in class javax.net.ServerSocketFactory
Returns a server socket bound to the specified port, and uses the specified
connection backlog.

createServerSocket(int, int, InetAddress) - Method in class
javax.net.ServerSocketFactory
Returns a server socket bound to the specified port, with a specified listen
backlog and local IP.

createSocket() - Method in class javax.net.SocketFactory
Creates an unconnected socket.

createSocket(InetAddress, int) - Method in class javax.net.SocketFactory
Creates a socket and connects it to the specified port number at the specified
address.

createSocket(InetAddress, int, InetAddress, int) - Method in class
javax.net.SocketFactory
Creates a socket and connect it to the specified remote address on the specified
remote port.

createSocket(Socket, String, int, boolean) - Method in class
javax.net.ssl.SSLSocketFactory
Returns a socket layered over an existing socket connected to the named host,
at the given port.

createSocket(String, int) - Method in class javax.net.SocketFactory
Creates a socket and connects it to the specified remote host at the specified
remote port.

createSocket(String, int, InetAddress, int) - Method in class
javax.net.SocketFactory
Creates a socket and connects it to the specified remote host on the specified
remote port.

D

decode(String) - Static method in class com.ibm.net.ssl.www.ParseUtil

© Copyright IBM Corp. 2004 Page 20 of 40

Returns a new String constructed from the specified String by replacing the URL
escape sequences and UTF8 encoding with the characters they represent.

E

encodePath(String) - Static method in class com.ibm.net.ssl.www.ParseUtil
Constructs an encoded version of the specified path string suitable for use in the
construction of a URL.

G

getAcceptedIssuers() - Method in interface com.ibm.net.ssl.X509TrustManager
Deprecated. Return an array of certificate authority certificates which are trusted
for authenticating peers.

getAcceptedIssuers() - Method in interface javax.net.ssl.X509TrustManager
Return an array of certificate authority certificates which are trusted for
authenticating peers.

getAlgorithm() - Method in class com.ibm.net.ssl.TrustManagerFactory
Deprecated. Returns the algorithm name of this TrustManagerFactory object.

getAlgorithm() - Method in class com.ibm.net.ssl.KeyManagerFactory
Deprecated. Returns the algorithm name of this KeyManagerFactory object.

getAlgorithm() - Method in class javax.net.ssl.TrustManagerFactory
Returns the algorithm name of this TrustManagerFactory object.

getAlgorithm() - Method in class javax.net.ssl.KeyManagerFactory
Returns the algorithm name of this KeyManagerFactory object.

getCertificateChain(String) - Method in interface
com.ibm.net.ssl.X509KeyManager
Deprecated. Returns the certificate chain associated with the given alias.

getCertificateChain(String) - Method in interface
javax.net.ssl.X509KeyManager
Returns the certificate chain associated with the given alias.

getCipherSuite() - Method in interface javax.net.ssl.SSLSession
Returns the name of the SSL cipher suite which is used for all connections in the
session.

© Copyright IBM Corp. 2004 Page 21 of 40

getCipherSuite() - Method in class javax.net.ssl.HttpsURLConnection
Returns the cipher suite in use on this connection.

getCipherSuite() - Method in class javax.net.ssl.HandshakeCompletedEvent
Returns the cipher suite in use by the session which was produced by the
handshake.

getClientAliases(String, Principal[]) - Method in interface
com.ibm.net.ssl.X509KeyManager
Deprecated. Get the matching aliases for authenticating the client side of a
secure socket given the public key type and the list of certificate issuer
authorities recognized by the peer (if any).

getClientAliases(String, Principal[]) - Method in interface
javax.net.ssl.X509KeyManager
Get the matching aliases for authenticating the client side of a secure socket
given the public key type and the list of certificate issuer authorities recognized
by the peer (if any).

getClientSessionContext() - Method in class javax.net.ssl.SSLContext
Returns the client session context, which represents the set of SSL sessions
available for use during the handshake phase of client-side SSL sockets.

getCreationTime() - Method in interface javax.net.ssl.SSLSession
Returns the time at which this Session representation was created, in
milliseconds since midnight, January 1, 1970 UTC.

getDefault() - Static method in class javax.net.SocketFactory
Returns a copy of the environment's default socket factory.

getDefault() - Static method in class javax.net.ServerSocketFactory
Returns a copy of the environment's default socket factory.

getDefault() - Static method in class javax.net.ssl.SSLSocketFactory
Returns the default SSL socket factory.

getDefault() - Static method in class javax.net.ssl.SSLServerSocketFactory
Returns the default SSL server socket factory.

getDefaultAlgorithm() - Static method in class
com.ibm.net.ssl.TrustManagerFactory
Deprecated. The default TrustManager can be changed by setting the value of
the "javax.net.ssl.TrustManager.type" security property (in the Java security
properties file) to the desired name.

© Copyright IBM Corp. 2004 Page 22 of 40

getDefaultAlgorithm() - Static method in class
com.ibm.net.ssl.KeyManagerFactory
Deprecated. The default KeyManager can be changed by setting the value of
the "javax.net.ssl.KeyManager.type" security property (in the Java security
properties file) to the desired name.

getDefaultAlgorithm() - Static method in class
javax.net.ssl.TrustManagerFactory
Obtains the default TrustManagerFactory algorithm name.

getDefaultAlgorithm() - Static method in class javax.net.ssl.KeyManagerFactory
The default KeyManager can be changed by setting the value of the
"ssl.KeyManagerFactory.algorithm" security property (in the Java security
properties file) to the desired name.

getDefaultCipherSuites() - Method in class javax.net.ssl.SSLSocketFactory
Returns the list of cipher suites which are enabled by default.

getDefaultCipherSuites() - Method in class
javax.net.ssl.SSLServerSocketFactory
Returns the list of cipher suites which are enabled by default.

getDefaultHostnameVerifier() - Static method in class
javax.net.ssl.HttpsURLConnection
Gets the default HostnameVerifier that it inherited when an instance of this class
is created.

getDefaultSSLSocketFactory() - Static method in class
com.ibm.net.ssl.HttpsURLConnection
Deprecated. Gets the default SSL socket factory.

getDefaultSSLSocketFactory() - Static method in class
javax.net.ssl.HttpsURLConnection
Gets the default static SSL socket factory used when creating sockets for secure
https URL connections.

getEnabledCipherSuites() - Method in class javax.net.ssl.SSLSocket
Returns the names of the SSL cipher suites which are currently enabled for use
on this connection.

getEnabledCipherSuites() - Method in class javax.net.ssl.SSLServerSocket
Returns the list of cipher suites which are currently enabled for use by newly
accepted connections.

getEnabledProtocols() - Method in class javax.net.ssl.SSLSocket

© Copyright IBM Corp. 2004 Page 23 of 40

Returns the names of the protocol versions which are currently enabled for use
on this connection.

getEnabledProtocols() - Method in class javax.net.ssl.SSLServerSocket
Returns the names of the protocols which are currently enabled for use by the
newly accepted connections.

getEnableSessionCreation() - Method in class javax.net.ssl.SSLSocket
Returns true if new SSL sessions may be established by this socket.

getEnableSessionCreation() - Method in class javax.net.ssl.SSLServerSocket
Returns true if new SSL sessions may be established by the sockets which are
created from this server socket.

getHostnameVerifier() - Method in class javax.net.ssl.HttpsURLConnection
Gets the HostnameVerifier in place on this instance.

getId() - Method in interface javax.net.ssl.SSLSession
Returns the identifier assigned to this Session.

getIds() - Method in interface javax.net.ssl.SSLSessionContext
Returns an Enumeration of all session id's grouped under this
SSLSessionContext.

getInstance(String) - Static method in class
com.ibm.net.ssl.TrustManagerFactory
Deprecated. Generates a TrustManagerFactory object that implements the
specified trust management algorithm.

getInstance(String) - Static method in class com.ibm.net.ssl.SSLContext
Deprecated. Generates a SSLContext object that implements the specified
secure socket protocol.

getInstance(String) - Static method in class
com.ibm.net.ssl.KeyManagerFactory
Deprecated. Generates a KeyManagerFactory object that implements the
specified management algorithm.

getInstance(String) - Static method in class javax.net.ssl.TrustManagerFactory
Generates a TrustManagerFactory object that implements the specified trust
management algorithm.

getInstance(String) - Static method in class javax.net.ssl.SSLContext
Generates a SSLContext object that implements the specified secure socket
protocol.

© Copyright IBM Corp. 2004 Page 24 of 40

getInstance(String) - Static method in class javax.net.ssl.KeyManagerFactory
Generates a KeyManagerFactory object that implements the specified key
management algorithm.

getInstance(String, Provider) - Static method in class
javax.net.ssl.TrustManagerFactory
Generates a TrustManagerFactory object for the specified trust management
algorithm from the specified provider.

getInstance(String, Provider) - Static method in class javax.net.ssl.SSLContext
Generates a SSLContext object that implements the specified secure socket
protocol from the specified provider.

getInstance(String, Provider) - Static method in class
javax.net.ssl.KeyManagerFactory
Generates a KeyManagerFactory object for the specified key management
algorithm from the specified provider.

getInstance(String, String) - Static method in class
com.ibm.net.ssl.TrustManagerFactory
Deprecated. Generates a TrustManagerFactory object for the specified trust
management algorithm from the specified provider.

getInstance(String, String) - Static method in class
com.ibm.net.ssl.SSLContext
Deprecated. Generates a SSLContext object that implements the specified
secure socket protocol.

getInstance(String, String) - Static method in class
com.ibm.net.ssl.KeyManagerFactory
Deprecated. Generates a KeyManagerFactory object for the specified key
management algorithm from the specified provider.

getInstance(String, String) - Static method in class
javax.net.ssl.TrustManagerFactory
Generates a TrustManagerFactory object for the specified trust management
algorithm from the specified provider.

getInstance(String, String) - Static method in class javax.net.ssl.SSLContext
Generates a SSLContext object that implements the specified secure socket
protocol from the specified provider.

getInstance(String, String) - Static method in class
javax.net.ssl.KeyManagerFactory
Generates a KeyManagerFactory object for the specified key management
algorithm from the specified provider.

© Copyright IBM Corp. 2004 Page 25 of 40

getKeyManagers() - Method in class com.ibm.net.ssl.KeyManagerFactory
Deprecated. Returns one key manager for each type of key material.

getKeyManagers() - Method in class javax.net.ssl.KeyManagerFactory
Returns one key manager for each type of key material.

getLastAccessedTime() - Method in interface javax.net.ssl.SSLSession
Returns the last time this Session representation was accessed by the session
level infrastructure, in milliseconds since midnight, January 1, 1970 UTC.

getLocalCertificates() - Method in interface javax.net.ssl.SSLSession
Returns the certificate(s) that were sent to the peer during handshaking.

getLocalCertificates() - Method in class javax.net.ssl.HttpsURLConnection
Returns the certificate(s) that were sent to the server during handshaking.

getLocalCertificates() - Method in class
javax.net.ssl.HandshakeCompletedEvent
Returns the certificate(s) that were sent to the peer during handshaking.

getName() - Method in class javax.net.ssl.SSLSessionBindingEvent
Returns the name to which the object is being bound, or the name from which
the object is being unbound.

getNeedClientAuth() - Method in class javax.net.ssl.SSLSocket
Returns true if the socket will require client authentication.

getNeedClientAuth() - Method in class javax.net.ssl.SSLServerSocket
Returns true if client authentication is required on newly accepted connections.

getPeerCertificateChain() - Method in interface javax.net.ssl.SSLSession
Returns the identity of the peer which was identified as part of defining the
session.

getPeerCertificateChain() - Method in class
javax.net.ssl.HandshakeCompletedEvent
Returns the identity of the peer which was identified as part of defining the
session.

getPeerCertificates() - Method in interface javax.net.ssl.SSLSession
Returns the identity of the peer which was established as part of defining the
session.

© Copyright IBM Corp. 2004 Page 26 of 40

getPeerCertificates() - Method in class
javax.net.ssl.HandshakeCompletedEvent
Returns the identity of the peer which was established as part of defining the
session.

getPeerHost() - Method in interface javax.net.ssl.SSLSession
Returns the host name of the peer in this session.

getPrivateKey(String) - Method in interface com.ibm.net.ssl.X509KeyManager
Deprecated. Returns the key associated with the given alias.

getPrivateKey(String) - Method in interface javax.net.ssl.X509KeyManager
Returns the key associated with the given alias.

getProtocol() - Method in class com.ibm.net.ssl.SSLContext
Deprecated. Returns the protocol name of this SSLContext object.

getProtocol() - Method in interface javax.net.ssl.SSLSession
Returns the standard name of the protocol used for all connections in the
session.

getProtocol() - Method in class javax.net.ssl.SSLContext
Returns the protocol name of this SSLContext object.

getProvider() - Method in class com.ibm.net.ssl.TrustManagerFactory
Deprecated. Returns the provider of this TrustManagerFactory object.

getProvider() - Method in class com.ibm.net.ssl.SSLContext
Deprecated. Returns the provider of this SSLContext object.

getProvider() - Method in class com.ibm.net.ssl.KeyManagerFactory
Deprecated. Returns the provider of this KeyManagerFactory object.

getProvider() - Method in class javax.net.ssl.TrustManagerFactory
Returns the provider of this TrustManagerFactory object.

getProvider() - Method in class javax.net.ssl.SSLContext
Returns the provider of this SSLContext object.

getProvider() - Method in class javax.net.ssl.KeyManagerFactory
Returns the provider of this KeyManagerFactory object.

getServerAliases(String, Principal[]) - Method in interface
com.ibm.net.ssl.X509KeyManager

© Copyright IBM Corp. 2004 Page 27 of 40

Deprecated. Get the matching aliases for authenticating the server side of a
secure socket given the public key type and the list of certificate issuer
authorities recognized by the peer (if any).

getServerAliases(String, Principal[]) - Method in interface
javax.net.ssl.X509KeyManager
Get the matching aliases for authenticating the server side of a secure socket
given the public key type and the list of certificate issuer authorities recognized
by the peer (if any).

getServerCertificateChain() - Method in class
com.ibm.net.ssl.HttpsURLConnection
Deprecated. Returns the server's X.509 certificate chain, or null if the server did
not authenticate.

getServerCertificates() - Method in class javax.net.ssl.HttpsURLConnection
Returns the server's certificate chain which was established as part of defining
the session.

getServerSessionContext() - Method in class javax.net.ssl.SSLContext
Returns the server session context, which represents the set of SSL sessions
available for use during the handshake phase of server-side SSL sockets.

getServerSocketFactory() - Method in class com.ibm.net.ssl.SSLContext
Deprecated. Returns a ServerSocketFactory object for this context.

getServerSocketFactory() - Method in class javax.net.ssl.SSLContext
Returns a ServerSocketFactory object for this context.

getSession() - Method in class javax.net.ssl.SSLSocket
Returns the SSL Session in use by this connection.

getSession() - Method in class javax.net.ssl.SSLSessionBindingEvent
Returns the SSLSession into which the listener is being bound or from which the
listener is being unbound.

getSession() - Method in class javax.net.ssl.HandshakeCompletedEvent
Returns the session that triggered this event.

getSession(byte[]) - Method in interface javax.net.ssl.SSLSessionContext
Returns the SSLSession bound to the specified session id.

getSessionCacheSize() - Method in interface javax.net.ssl.SSLSessionContext
Returns the size of the cache used for storing SSLSession objects grouped
under this SSLSessionContext.

© Copyright IBM Corp. 2004 Page 28 of 40

getSessionContext() - Method in interface javax.net.ssl.SSLSession
Returns the context in which this session is bound.

getSessionTimeout() - Method in interface javax.net.ssl.SSLSessionContext
Returns the timeout limit of SSLSession objects grouped under this
SSLSessionContext.

getSocket() - Method in class javax.net.ssl.HandshakeCompletedEvent
Returns the socket which is the source of this event.

getSocketFactory() - Method in class com.ibm.net.ssl.SSLContext
Deprecated. Returns a SocketFactory object for this context.

getSocketFactory() - Method in class javax.net.ssl.SSLContext
Returns a SocketFactory object for this context.

getSSLSocketFactory() - Method in class com.ibm.net.ssl.HttpsURLConnection
Deprecated. Gets the SSL socket factory.

getSSLSocketFactory() - Method in class javax.net.ssl.HttpsURLConnection
Gets the SSL socket factory to be used when creating sockets for secure https
URL connections.

getSupportedCipherSuites() - Method in class javax.net.ssl.SSLSocketFactory
Returns the names of the cipher suites which could be enabled for use on an
SSL connection.

getSupportedCipherSuites() - Method in class javax.net.ssl.SSLSocket
Returns the names of the cipher suites which could be enabled for use on this
connection.

getSupportedCipherSuites() - Method in class
javax.net.ssl.SSLServerSocketFactory
Returns the names of the cipher suites which could be enabled for use on an
SSL connection created by this factory.

getSupportedCipherSuites() - Method in class javax.net.ssl.SSLServerSocket
Returns the names of the cipher suites which could be enabled for use on an
SSL connection.

getSupportedProtocols() - Method in class javax.net.ssl.SSLSocket
Returns the names of the protocols which could be enabled for use on an SSL
connection.

getSupportedProtocols() - Method in class javax.net.ssl.SSLServerSocket
Returns the names of the protocols which could be enabled for use.

© Copyright IBM Corp. 2004 Page 29 of 40

getTrustManagers() - Method in class com.ibm.net.ssl.TrustManagerFactory
Deprecated. Returns one trust manager for each type of trust material.

getTrustManagers() - Method in class javax.net.ssl.TrustManagerFactory
Returns one trust manager for each type of trust material.

getUseClientMode() - Method in class javax.net.ssl.SSLSocket
Returns true if the socket is set to use client mode in its first handshake.

getUseClientMode() - Method in class javax.net.ssl.SSLServerSocket
Returns true if accepted connections will be in SSL client mode.

getValue(String) - Method in interface javax.net.ssl.SSLSession
Returns the object bound to the given name in the session's application layer
data.

getValueNames() - Method in interface javax.net.ssl.SSLSession
Returns an array of the names of all the application layer data objects bound into
the Session.

getWantClientAuth() - Method in class javax.net.ssl.SSLSocket
Returns true if the socket will request client authentication.

getWantClientAuth() - Method in class javax.net.ssl.SSLServerSocket
Returns true if client authentication is requested on newly accepted connections.

H

Handler - class com.ibm.net.ssl.internal.www.protocol.https.Handler.

This class exists for compatibility with previous JSSE releases only.

Handler - class com.ibm.net.ssl.www.protocol.http.Handler.

open an http input stream given a URL

Handler - class com.ibm.net.ssl.www.protocol.https.Handler.

open an http input stream given a URL

Handler() - Constructor for class
com.ibm.net.ssl.internal.www.protocol.https.Handler

Handler() - Constructor for class com.ibm.net.ssl.www.protocol.http.Handler

Handler() - Constructor for class com.ibm.net.ssl.www.protocol.https.Handler

© Copyright IBM Corp. 2004 Page 30 of 40

Handler(String, int) - Constructor for class
com.ibm.net.ssl.internal.www.protocol.https.Handler

Handler(String, int) - Constructor for class
com.ibm.net.ssl.www.protocol.http.Handler

Handler(String, int) - Constructor for class
com.ibm.net.ssl.www.protocol.https.Handler

handshakeCompleted(HandshakeCompletedEvent) - Method in interface
javax.net.ssl.HandshakeCompletedListener
This method is invoked on registered objects when a SSL handshake is
completed.

HandshakeCompletedEvent - class javax.net.ssl.HandshakeCompletedEvent.
This event indicates that an SSL handshake completed on a given SSL
connection.

HandshakeCompletedEvent(SSLSocket, SSLSession) - Constructor for class
javax.net.ssl.HandshakeCompletedEvent
Constructs a new HandshakeCompletedEvent.

HandshakeCompletedListener - interface
javax.net.ssl.HandshakeCompletedListener.
This interface is implemented by any class which wants to receive notifications
about the completion of an SSL protocol handshake on a given SSL connection.

HostnameVerifier - interface javax.net.ssl.HostnameVerifier.
This class is the base interface for hostname verification.

HttpsURLConnection - class javax.net.ssl.HttpsURLConnection.
HttpsURLConnection extends HttpURLConnection with support for https-specific
features.

I

init(KeyManager[], TrustManager[], SecureRandom) - Method in class
com.ibm.net.ssl.SSLContext
Deprecated. Initializes this context.

init(KeyManager[], TrustManager[], SecureRandom) - Method in class
javax.net.ssl.SSLContext
Initializes this context.

© Copyright IBM Corp. 2004 Page 31 of 40

init(KeyStore) - Method in class com.ibm.net.ssl.TrustManagerFactory
Deprecated. Initializes this factory with a source of certificate authorities and
related trust material.

init(KeyStore) - Method in class javax.net.ssl.TrustManagerFactory
Initializes this factory with a source of certificate authorities and related trust
material.

init(KeyStore, char[]) - Method in class com.ibm.net.ssl.KeyManagerFactory
Deprecated. Initializes this factory with a source of key material.

init(KeyStore, char[]) - Method in class javax.net.ssl.KeyManagerFactory
Initializes this factory with a source of key material.

init(ManagerFactoryParameters) - Method in class
javax.net.ssl.TrustManagerFactory
Initializes this factory with a source of provider-specific trust material.

init(ManagerFactoryParameters) - Method in class
javax.net.ssl.KeyManagerFactory
Initializes this factory with a source of provider-specific key material.

init(String, String, String) - Method in class com.ibm.net.ssl.SSLContext
Deprecated. Initializes this context.

invalidate() - Method in interface javax.net.ssl.SSLSession
Invalidates the session.

isClientTrusted(X509Certificate[]) - Method in interface
com.ibm.net.ssl.X509TrustManager
Deprecated. Given the partial or complete certificate chain provided by the peer,
build a certificate path to a trusted root and return true if it can be validated and
is trusted for client SSL authentication.

isServerTrusted(X509Certificate[]) - Method in interface
com.ibm.net.ssl.X509TrustManager
Deprecated. Given the partial or complete certificate chain provided by the peer,
build a certificate path to a trusted root and return true if it can be validated and
is trusted for server SSL authentication.

J

javax.net - package javax.net

© Copyright IBM Corp. 2004 Page 32 of 40

javax.net.ssl - package javax.net.ssl

K

KeyManager - interface com.ibm.net.ssl.KeyManager.
Deprecated. As of JDK 1.4, this implementation-specific class was replaced by
KeyManager. of a secure socket.

KeyManager - interface javax.net.ssl.KeyManager.
This is the base interface for JSSE key managers.

KeyManagerFactory - class com.ibm.net.ssl.KeyManagerFactory.
Deprecated. As of JDK 1.4, this implementation-specific class was replaced by
KeyManagerFactory.

KeyManagerFactory - class javax.net.ssl.KeyManagerFactory.
This class acts as a factory for key managers based on a source of key material.

KeyManagerFactorySpi - class com.ibm.net.ssl.KeyManagerFactorySpi.
Deprecated. As of JDK 1.4, this implementation-specific class was replaced by
KeyManagerFactorySpi.

KeyManagerFactorySpi - class javax.net.ssl.KeyManagerFactorySpi.
This class defines the Service Provider Interface (SPI) for the
KeyManagerFactory class.

KeyManagerFactorySpi() - Constructor for class
com.ibm.net.ssl.KeyManagerFactorySpi
Deprecated.

KeyManagerFactorySpi() - Constructor for class
javax.net.ssl.KeyManagerFactorySpi

L

M

ManagerFactoryParameters - interface
javax.net.ssl.ManagerFactoryParameters.

© Copyright IBM Corp. 2004 Page 33 of 40

This class is the base interface for providing algorithm-specific information to a
KeyManagerFactory or TrustManagerFactory.

P

putValue(String, Object) - Method in interface javax.net.ssl.SSLSession
Binds the specified value object into the session's application layer data with the
given name.

R

removeHandshakeCompletedListener(HandshakeCompletedListener) -
Method in class javax.net.ssl.SSLSocket
Removes a previously registered handshake completion listener.

removeValue(String) - Method in interface javax.net.ssl.SSLSession
Removes the object bound to the given name in the session's application layer
data.

S

ServerSocketFactory - class javax.net.ServerSocketFactory.
This class creates server sockets.

setEnabledCipherSuites(String[]) - Method in class javax.net.ssl.SSLSocket
Controls which particular cipher suites are enabled for use on this connection.

setEnabledCipherSuites(String[]) - Method in class
javax.net.ssl.SSLServerSocket
Controls which particular SSL cipher suites are enabled for use by accepted
connections.

setEnabledProtocols(String[]) - Method in class javax.net.ssl.SSLSocket
Controls which particular protocol versions are enabled for use on this
connection.

setEnabledProtocols(String[]) - Method in class
javax.net.ssl.SSLServerSocket
Controls which particular protocols are enabled for use by accepted connections.

setEnableSessionCreation(boolean) - Method in class
javax.net.ssl.SSLSocket
Controls whether new SSL sessions may be established by this socket.

© Copyright IBM Corp. 2004 Page 34 of 40

setEnableSessionCreation(boolean) - Method in class
javax.net.ssl.SSLServerSocket
Controls whether new SSL sessions may be established by the sockets which
are created from this server socket.

setHostnameVerifier(HostnameVerifier) - Method in class
javax.net.ssl.HttpsURLConnection
Sets the HostnameVerifier.

setNeedClientAuth(boolean) - Method in class javax.net.ssl.SSLSocket
Configures the socket to require client authentication.

setNeedClientAuth(boolean) - Method in class javax.net.ssl.SSLServerSocket
Controls whether the connections which are accepted must include successful
client authentication.

setSessionCacheSize(int) - Method in interface
javax.net.ssl.SSLSessionContext
Sets the size of the cache used for storing SSLSession objects grouped under
this SSLSessionContext.

setSessionTimeout(int) - Method in interface javax.net.ssl.SSLSessionContext
Sets the timeout limit for SSLSession objects grouped under this
SSLSessionContext.

setSSLSocketFactory(SSLSocketFactory) - Method in class
javax.net.ssl.HttpsURLConnection
Sets the SSL socket factory to be used when creating sockets for secure https
URL connections.

setUseClientMode(boolean) - Method in class javax.net.ssl.SSLSocket
Configures the socket to use client (or server) mode in its first handshake.

setUseClientMode(boolean) - Method in class javax.net.ssl.SSLServerSocket
Controls whether accepted connections are in the (default) SSL server mode, or
the SSL client mode.

setWantClientAuth(boolean) - Method in class javax.net.ssl.SSLSocket
Configures the socket to request client authentication, but only if such a request
is appropriate to the cipher suite negotiated.

setWantClientAuth(boolean) - Method in class javax.net.ssl.SSLServerSocket
Controls whether the connections which are accepted should request client
authentication as part of the SSL negotiations.

© Copyright IBM Corp. 2004 Page 35 of 40

SocketFactory - class javax.net.SocketFactory.
This class creates sockets.

SSLContext - class com.ibm.net.ssl.SSLContext.
Deprecated. As of JDK 1.4, this implementation-specific class was replaced by
SSLContext.

SSLContext - class javax.net.ssl.SSLContext.
Instances of this class represent a secure socket protocol implementation which
acts as a factory for secure socket factories.

SSLContextSpi - class com.ibm.net.ssl.SSLContextSpi.
Deprecated. As of JDK 1.4, this implementation-specific class was replaced by
SSLContextSpi.

SSLContextSpi - class javax.net.ssl.SSLContextSpi.
This class defines the Service Provider Interface (SPI) for the SSLContext class.

SSLContextSpi() - Constructor for class com.ibm.net.ssl.SSLContextSpi
Deprecated.

SSLContextSpi() - Constructor for class javax.net.ssl.SSLContextSpi

SSLException - exception javax.net.ssl.SSLException.
Indicates some kind of error detected by an SSL subsystem.

SSLException(String) - Constructor for class javax.net.ssl.SSLException
Constructs an exception reporting an error found by an SSL subsystem.

SSLHandshakeException - exception javax.net.ssl.SSLHandshakeException.
Indicates that the client and server could not negotiate the desired level of
security.

SSLHandshakeException(String) - Constructor for class
javax.net.ssl.SSLHandshakeException
Constructs an exception reporting an error found by an SSL subsystem during
handshaking.

SSLKeyException - exception javax.net.ssl.SSLKeyException.
Reports a bad SSL key.

SSLKeyException(String) - Constructor for class
javax.net.ssl.SSLKeyException
Constructs an exception reporting a key management error found by an SSL
subsystem.

© Copyright IBM Corp. 2004 Page 36 of 40

SSLPeerUnverifiedException - exception
javax.net.ssl.SSLPeerUnverifiedException.
Indicates that the peer's identity has not been verified.

SSLPeerUnverifiedException(String) - Constructor for class
javax.net.ssl.SSLPeerUnverifiedException
Constructs an exception reporting that the SSL peer's identity has not been
verifiied.

SSLPermission - class javax.net.ssl.SSLPermission.
This class is for various network permissions.

SSLPermission(String) - Constructor for class javax.net.ssl.SSLPermission
Creates a new SSLPermission with the specified name.

SSLPermission(String, String) - Constructor for class
javax.net.ssl.SSLPermission
Creates a new SSLPermission object with the specified name.

SSLProtocolException - exception javax.net.ssl.SSLProtocolException.
Reports an error in the operation of the SSL protocol.

SSLProtocolException(String) - Constructor for class
javax.net.ssl.SSLProtocolException
Constructs an exception reporting an SSL protocol error detected by an SSL
subsystem.

SSLServerSocket - class javax.net.ssl.SSLServerSocket.
This class extends ServerSockets and provides secure server sockets using
protocols such as the Secure Sockets Layer (SSL) or Transport Layer Security
(TLS) protocols.

SSLServerSocketFactory - class javax.net.ssl.SSLServerSocketFactory.
SSLServerSocketFactorys create SSLServerSockets.

SSLSession - interface javax.net.ssl.SSLSession.
In SSL, sessions are used to describe an ongoing relationship between two
entities.

SSLSessionBindingEvent - class javax.net.ssl.SSLSessionBindingEvent.
This event is propagated to a SSLSessionBindingListener.

SSLSessionBindingEvent(SSLSession, String) - Constructor for class
javax.net.ssl.SSLSessionBindingEvent
Constructs a new SSLSessionBindingEvent.

© Copyright IBM Corp. 2004 Page 37 of 40

SSLSessionBindingListener - interface
javax.net.ssl.SSLSessionBindingListener.
This interface is implemented by objects which want to know when they are
being bound or unbound from a SSLSession.

SSLSessionContext - interface javax.net.ssl.SSLSessionContext.
A SSLSessionContext represents a set of SSLSessions associated with a single
entity.

SSLSocket - class javax.net.ssl.SSLSocket.
This class extends Sockets and provides secure socket using protocols such as
the "Secure Sockets Layer" (SSL) or IETF "Transport Layer Security" (TLS)
protocols.

SSLSocketFactory - class javax.net.ssl.SSLSocketFactory.
SSLSocketFactorys create SSLSockets.

SSLSocketFactory() - Constructor for class javax.net.ssl.SSLSocketFactory

startHandshake() - Method in class javax.net.ssl.SSLSocket
Starts an SSL handshake on this connection.

T

TrustManager - interface com.ibm.net.ssl.TrustManager.
Deprecated. As of JDK 1.4, this implementation-specific class was replaced by
TrustManager.

TrustManager - interface javax.net.ssl.TrustManager.
This is the base interface for JSSE trust managers.

TrustManagerFactory - class com.ibm.net.ssl.TrustManagerFactory.
Deprecated. As of JDK 1.4, this implementation-specific class was replaced by
TrustManagerFactory.

TrustManagerFactory - class javax.net.ssl.TrustManagerFactory.
This class acts as a factory for trust managers based on a source of trust
material.

TrustManagerFactorySpi - class com.ibm.net.ssl.TrustManagerFactorySpi.
Deprecated. As of JDK 1.4, this implementation-specific class was replaced by
TrustManagerFactorySpi.

© Copyright IBM Corp. 2004 Page 38 of 40

TrustManagerFactorySpi - class javax.net.ssl.TrustManagerFactorySpi.
This class defines the Service Provider Interface (SPI) for the
TrustManagerFactory class.

TrustManagerFactorySpi() - Constructor for class
com.ibm.net.ssl.TrustManagerFactorySpi
Deprecated.

TrustManagerFactorySpi() - Constructor for class
javax.net.ssl.TrustManagerFactorySpi

V

valueBound(SSLSessionBindingEvent) - Method in interface
javax.net.ssl.SSLSessionBindingListener
This is called to notify the listener that it is being bound into an SSLSession.

valueUnbound(SSLSessionBindingEvent) - Method in interface
javax.net.ssl.SSLSessionBindingListener
This is called to notify the listener that it is being unbound from a SSLSession.

verify(String, SSLSession) - Method in interface javax.net.ssl.HostnameVerifier
Verify that the host name is an acceptable match with the server's authentication
scheme.

X

X509KeyManager - interface com.ibm.net.ssl.X509KeyManager.
Deprecated. As of JDK 1.4, this implementation-specific class was replaced by
X509KeyManager.

X509KeyManager - interface javax.net.ssl.X509KeyManager.
Instances of this interface manage which X509 certificate-based key pairs are
used to authenticate the local side of a secure socket.

X509TrustManager - interface com.ibm.net.ssl.X509TrustManager.
Deprecated. As of JDK 1.4, this implementation-specific class was replaced by
X509TrustManager.

X509TrustManager - interface javax.net.ssl.X509TrustManager.
Instance of this interface manage which X509 certificates may be used to
authenticate the remote side of a secure socket.

© Copyright IBM Corp. 2004 Page 39 of 40

X509V1CertImpl - class com.ibm.security.cert.X509V1CertImpl.
The X509V1CertImpl class is used as a conversion wrapper around
sun.security.x509.X509Cert certificates when running under JDK1.1.x.

X509V1CertImpl() - Constructor for class com.ibm.security.cert.X509V1CertImpl
Default constructor.

X509V1CertImpl(byte[]) - Constructor for class
com.ibm.security.cert.X509V1CertImpl
Unmarshals a certificate from its encoded form, parsing the encoded bytes.

X509V1CertImpl(InputStream) - Constructor for class
com.ibm.security.cert.X509V1CertImpl unmarshals an X.509 certificate from an
input stream.

© Copyright IBM Corp. 2004 Page 40 of 40

Notices

Java is a registered trademark of SUN. Inc.

HP-UX is a registered trademark Hewlet Packard, Inc.

AIX, Everyplace, z/OS, AS/400 and IBM are trademarks or registered trademarks
of IBM Corporation in the United States, other countries, or both.

Pentium and X-Scale are trademarks or registered trademarks of Intel
Corporation in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks or
registered trademarks of Microsoft Corporation in the United States, other
countries, or both.

UNIX is a registered trademark of The Open Group in the United States and
other countries.

Linux is a registered trademark of Linus Torvalds.

Red Hat is a trademark of Red Hat, Inc.

SuSE is a registered trademark of SuSE AG

Other company, product, and service names may be trademarks or service
marks of others.

© 2004 International Business Machines Corporation. All rights reserved.

