

 SafeNet, Inc.

 SafeNet Non-Proprietary

CGX Cryptographic Module
Software Versions 3.18/3.18.1/3.18.2

Security Policy

Level 2

Security Rule Specification

Approved Document

Revision: 1.5

Date: 25 September 2006
Status: Approved

SafeNet, Inc. maintains a website with up-to-date technical documentation for our
customers. Contact SafeNet for access:

www.safenet-inc.com

© 2006 SafeNet, Inc.

ALL RIGHTS RESERVED
This document may be freely reproduced and distributed whole and intact including this copyright notice.

SafeNet reserves the right to make changes in the product or its specifications mentioned in this publication without notice. Accordingly, the reader is
cautioned to verify that information in this publication is current before placing orders. The information furnished by SafeNet in this document is
believed to be accurate and reliable. However, no responsibility is assumed by SafeNet for its use, or for any infringements of patents or other rights
of third parties resulting from its use. No part of this publication may be copied or reproduced in any form or by any means, or transferred to any third
party without prior written consent of SafeNet.

SafeNet, Inc. CGX Cryptographic Module Version 3.18/3.18.1/3.18.2 - Security Policy Level 2

* SafeNet Non-Proprietary * - ii - Rev 1.5
© 2006 SafeNet, Inc. All rights reserved

For Further Information:

siliconsales@safenet-inc.com

SafeNet, Inc.
100 Conifer Hill Drive, Suite 513
Danvers, MA 01923
U.S.A.
Phone: (+1) 978-539-4800 Fax: (+1) 978 739-5698

SafeNet BV
The Netherlands
Boxtelseweg 26A
5261 NE Vught
P.O. Box 22
5260 AA Vught
The Netherlands
Phone: +31-73-6581900 Fax: +31-73-6581999

SafeNet, Inc.
Corporate Headquarters
4690 Millennium Drive
Belcamp MD, 21017
Phone: (410) 931-7500 Fax: (410) 931-7524

Revision History

Rev Page(s) Date Author Purpose of Revision
0.1 All 3/5/03 LG Initial submission

0.2 All 5/12/03 LG Updated submission for review

0.3 All 6/25/03 LG Final edits from COACT

1.0 All 6/26/03 LG Approved by Rick DeFelice

1.1 All 7/16/03 LG Modifications per NIST review

1.2 All 2/20/04 DP Modifications per NIST/CSE Review

1.3 All 08/29/06 KCW Modified for 3.18.1 review.

1.4 All 09/13/06 KCW Modified for 3.18 and 3.18.1 coverage.

1.5 All 09/25/06 KCW Modified for 3.18.2 coverage.

SafeNet, Inc. CGX Cryptographic Module Version 3.18/3.18.1/3.18.2 - Security Policy Level 2

* SafeNet Non-Proprietary * - iii - Rev 1.5
© 2006 SafeNet, Inc. All rights reserved

SafeNet, Inc. CGX Cryptographic Module Version 3.18/3.18.1/3.18.2 - Security Policy Level 2

* SafeNet Non-Proprietary * - iv - Rev 1.5
© 2006 SafeNet, Inc. All rights reserved

TABLE OF CONTENTS

REVISION HISTORY... II

TABLE OF CONTENTS..IV

1 OVERVIEW .. 5

2 CGX FUNCTIONAL SPECIFICATIONS ... 6
2.1 APPLICATION LAYER .. 6
2.2 CGX COMMAND INTERFACE LAYER ... 7
2.3 CGX COMMAND PROCESSOR LAYER .. 7
2.4 CGX OVERLAY LAYER .. 7
2.5 CRYPTOLIB LAYER .. 8
2.6 CRYPTOGRAPHIC BOUNDARY .. 8

3 SECURITY LEVEL.. 10

4 ROLES AND SERVICES... 11
4.1 CGX KERNEL COMMAND DESCRIPTIONS .. 13
4.2 SECURITY RULES ... 17
4.3 DEFINITION OF SECURITY RELEVANT DATA ITEMS.. 19

4.3.1 SYMMETRIC KEYS ... 19
4.3.2 ASYMMETRIC KEYS... 19
4.3.3 OTHER OBJECTS... 19

4.4 SERVICE TO SRDI ACCESS OPERATION ... 21
5 PHYSICAL SECURITY... 22

MITIGATION OF OTHER ATTACKS... 23

LIST OF ACRONYMS... 24

SafeNet, Inc. CGX Cryptographic Module Version 3.18/3.18.1/3.18.2 - Security Policy Level 2

* SafeNet Non-Proprietary * - 5 - Rev 1.5
© 2006 SafeNet, Inc. All rights reserved

The SafeNet CGX (CryptoGraphic eXtensions) software version 3.18/3.18.1/3.18.2 library is a suite of
approximately 143 cryptographic functions, which are available to applications which require security services. It is
currently implemented on production grade Windows operating systems (NT 4.0, 2000, XP) as well as embedded in
numerous SafeNet cryptographic accelerator chips. For the purposes of the FIPS 140-2 validation, the scope of the
of the product being submitted for validation has been limited to 40 kernel functions, implemented as a multi-chip
standalone module entirely in software as either a dynamic link library (IreCGX.dll for 3.18/3.18.1, SafeCGX.dll for
3.18.2) or as a kernel service (crypto.sys for 3.18/3.18.1, SafeCGX.sys for 3.18.2) on a Dell Optiplex GX400
running Windows 2000 Professional with Service Pack 3 and Hotfix Q326886.

.

1 Overview

SafeNet, Inc. CGX Cryptographic Module Version 3.18/3.18.1/3.18.2 - Security Policy Level 2

* SafeNet Non-Proprietary * - 6 - Rev 1.5
© 2006 SafeNet, Inc. All rights reserved

The SafeNet security software which is made available to applications running on a Windows NT 4.0, 2000, or XP
platform is designated the SafeNet CGX Kernel. To simplify application-level access to crypto functions, an
Application Programming Interface (API) is provided to the CGX Kernel. The CGX Command Interface defines the
boundaries between the security functions (which the CGX Kernel implements) and the externally running
applications. One of the primary goals of the CGX software is to abstract the CGX Kernel from the application in a
secure and efficient manner. The CGX interface is designed so that it can be viewed as a Crypto Library with a C-
structure like interface with argument and pointer-passing. To make a CGX command call a structure is populated
with arguments and a call is made to the CGX kernel, passing a pointer to the structure.

Figure 1 CGX layers

To execute a CGX command, a structure is populated with arguments and a ‘C’ language call is made to the CGX
Kernel, passing a pointer to the structure. Alternatively, a macro from the header file cgx.h may be used with the
appropriate arguments for the command. The macro for the command will insert the arguments into the control
block structure and invoke the CGX Kernel.

The CGX software resides within the dashed line illustrated in Figure 1. The application uses the CGX Command
Interface as an API to access the CGX command set. To better understand the software architecture of the CGX
security software, a description of each layer is provided in the sections below.

2.1 APPLICATION LAYER

The application layer is where the actual application program and data space reside. The application can implement
anything from a router security co-processor to a V.34 modem data pump, but for purposes of this FIPS 140-2
validation the application is assumed to be a software-only application.

In order to access the cryptographic services, the application must invoke the CGX command interface and supply a
command code and arguments. It is likely that the application layer will include a ‘CGX Processing Manager’
which accepts host-originated requests, formats them, and then issues the call to CGX for processing.

Residing as part of the application layer are the macro functions that SafeNet provides in its cgx.h and ecgx.h files.
These optional macros assist the application in preparing the command messages prior to calling the CGX Kernel.

2 CGX Functional Specifications

Application Layer

CGX Command Interface (API)

CGX Command Processor

CGX Overlay

Crypto Library

Crypto
CGX

Kernel

CGX Macros (cgx.h)

SafeNet, Inc. CGX Cryptographic Module Version 3.18/3.18.1/3.18.2 - Security Policy Level 2

* SafeNet Non-Proprietary * - 7 - Rev 1.5
© 2006 SafeNet, Inc. All rights reserved

2.2 CGX COMMAND INTERFACE LAYER

The CGX command interface layer is an Application Programming Interface (API) that defines the boundaries
between the application and the CGX Kernel. The CGX command interface provides the mechanism to enter and
exit the CGX Kernel in order to execute a specific cryptographic command.

The software interface to the CGX Kernel is via the kernel block and the command block. The kernel block is a
simple structure that specifies memory modes and provides a pointer to the command block, allowing flexible
placement in memory. It also contains a status element that the application can read to determine the result of a
requested cryptographic service. The command block is used to request a specific cryptographic command and to
provide a means of supplying arguments.

Therefore, all communications between the application and the CGX Kernel is via the command interface and a
kernel block and command block. The command interface is discussed in more detail in Chapter 3 of the CGX
Programmer’s Guide.

2.3 CGX COMMAND PROCESSOR LAYER

The CGX Command Processor implements a secure Operating System responsible for processing application
requests for various cryptographic services. Once the CGX Kernel is active, it can process the requested
cryptographic function specified in the kernel block & command block defined as part of the CGX command
interface layer.

2.4 CGX OVERLAY LAYER

The CGX overlay layer is provided as the interface into SafeNet’s CryptoLIB software. The CryptoLIB software is
a library that is designed for multiple platforms, ranging from the PC to embedded systems. The CGX overlay acts
as the ‘wrap code’ to enable the library to execute on a platform unmodified.

Figure 2 illustrates the data flow through the CGX overlay layer.

CGX Overlay

kernel
block

CGX
CryptoLIB
Operations

Figure 2 CGX overlay interface

SafeNet, Inc. CGX Cryptographic Module Version 3.18/3.18.1/3.18.2 - Security Policy Level 2

* SafeNet Non-Proprietary * - 8 - Rev 1.5
© 2006 SafeNet, Inc. All rights reserved

When a cryptographic request is received, the CGX Command Processor parses the kernel block to determine the
cryptographic command to execute. The CGX Command Processor executes a CGX overlay operation from a table,
based on the command value embedded in the command block portion of the kernel block. The CGX overlay
operation is responsible for extracting the arguments from the kernel block and invoking the proper CryptoLIB
operations. In some cases, the CGX overlay operation may invoke several CryptoLIB operations. In effect, this is
an object-oriented approach where the CGX overlay class is the parent class to the CryptoLIB classes.

2.5 CRYPTOLIB LAYER

The CryptoLIB layer contains SafeNet’s Crypto Library software. The CryptoLIB software is a library of many
cryptographic classes implementing various cryptographic algorithms including symmetrical encryption algorithms,
one-way hash functions, and public key operations.

2.6 CRYPTOGRAPHIC BOUNDARY
Figure 3 illustrates the cryptographic boundary of the CGX module, interconnections among major components of
the CGX module and between the CGX module and equipment or components outside of the cryptographic
boundary. For the purpose of completeness, the Hardware Provider Interface (HPI) is included inside of the
cryptographic boundary; however, since it’s purpose is to provide communication between the CGX kernel and an
installed cryptographic accelerator chip, for the purposes of this validation the only function performed by the HPI is
to confirm the absence of hardware acceleration.

SafeNet, Inc. CGX Cryptographic Module Version 3.18/3.18.1/3.18.2 - Security Policy Level 2

* SafeNet Non-Proprietary * - 9 - Rev 1.5
© 2006 SafeNet, Inc. All rights reserved

PCI Bus

Packet De-Queue
 - Interrupt/Poll
 -Call-back
f

Replaceable
Modules

Ring

Plugi

BUS SW

KEY

Processor
or

Embedded HW

SafeNet SafeXcel
Hardware Chip

(2141, 1140, 1141, 1741)
or

Embedded IP

Packet Queue
 - User mode
 function call

PDR

Example
Applications

HPI (Hardware Provider Interface)

Sharing
I/O

Memory CGX
3.18/3.18.1/3.18.2

Library

Exception

CGX API

Packet Process

IKE Daemon
Other

Processes

Co-
Processor

UDM BUS

SA Mgr

PRNG

LSV

Software
Public Key

Software
Hash

Software
DES/3DES/etc.

Software
Compression

W
R

R
D

UDM
(Packet Driver)

W
R

R
D

W
R

R
D

Packet
Descriptor

Ring

Packet
Processor
Interface

Processor
(i.e. C55, 218x, etc.)

C
ry

pt
og

ra
ph

ic

B
ou

nd
ar

y

Figure 3 Definition of Cryptographic Boundary

SafeNet, Inc. CGX Cryptographic Module Version 3.18/3.18.1/3.18.2 - Security Policy Level 2

* SafeNet Non-Proprietary * - 10 - Rev 1.5
© 2006 SafeNet, Inc. All rights reserved

The cryptographic module meets the overall requirements applicable to Level 2 security of FIPS 140-2 when
running on any Dell Optiplex GX400 server running Windows 2000 Professional with Service Pack 3 and HotFix
Q326886 installed.

Table 1. Module Security Level 2 Specification

 Security Requirements Section Level

Cryptographic Module Specification 2

Module Ports and Interfaces 2

Roles, Services and Authentication 2

Finite State Machine 2

Physical Security 2

Operational Environment 2

Cryptographic Key Management 2

EMI/EMC 3

Self Tests 2

Design Assurance 3

Mitigation of Other Attacks 2

3 Security Level

SafeNet, Inc. CGX Cryptographic Module Version 3.18/3.18.1/3.18.2 - Security Policy Level 2

* SafeNet Non-Proprietary * - 11 - Rev 1.5
© 2006 SafeNet, Inc. All rights reserved

The CGX cryptographic module shall support two distinct operator roles. These operator roles are:

1. User Role (CryptoUser)
2. Cryptographic Officer Role (CryptoOfficer)

When running on Windows 2000, the cryptographic module enforces role-based operator authentication. Windows
2000 provides authenticated login, which it enforces on the operator.

Role Type of Authentication Authentication Data
User Role Logon Password
Cryptographic Officer Role Logon Password

Table C1. Roles and Required Identification and Authentication

Operating System Mechanism Strength of Mechanism
MS Windows 2000 Kerberos Version 5 56-bit DES

Table C2. Strengths of Authentication Mechanisms

4 Roles and Services

SafeNet, Inc. CGX Cryptographic Module Version 3.18/3.18.1/3.18.2 - Security Policy Level 2

* SafeNet Non-Proprietary * - 12 - Rev 1.5
© 2006 SafeNet, Inc. All rights reserved

The following table lists the CGX kernel commands and their applicable roles.

CGX Command Crypto Officer Role User Role
CGX_INIT X
CGX_DEFAULT X
CGX_RANDOM X
CGX_GET_CHIPINFO X
CGX_ZEROIZE_KEYS X
CGX_SELF_TEST X
 Symmetric Key Commands
CGX_UNCOVER_KEY X
CGX_GEN_KEK X
CGX_GEN_KEY X
CGX_LOAD_KEY X
CGX_DERIVE_KEY X
CGX_TRANSFORM_KEY X
CGX_EXPORT_KEY X
CGX_IMPORT_KEY X
CGX_DESTROY_KEY X
CGX_LOAD_KG X
CGX_ENCRYPT X
CGX_DECRYPT X
 Asymmetric Key Commands
CGX_GEN_PUBKEY X
CGX_GEN_NEWPUBKEY X
CGX_GEN_NEGKEY X
CGX_PUBKEY_ENCRYPT X
CGX_PUBKEY_DECRYPT X
CGX_IMPORT_PUBKEY X
CGX_EXPORT_PUBKEY X
 Digital Signature Commands
CGX_SIGN X
CGX_VERIFY X
 Hash Commands
CGX_HASH_INIT X
CGX_HASH_DATA X
CGX_HASH_ENCRYPT X
CGX_HASH_DECRYPT X
 Prf Commands
CGX_PRF_DATA X
CGX_PRF_KEY X
CGX_MERGE_KEY X
CGX_MERGE_LONG_KEY X
CGX_LONG_KEY_EXTRACT X
 Math Commands
CGX_MATH X

Table C3. Services Authorized for Roles

SafeNet, Inc. CGX Cryptographic Module Version 3.18/3.18.1/3.18.2 - Security Policy Level 2

* SafeNet Non-Proprietary * - 13 - Rev 1.5
© 2006 SafeNet, Inc. All rights reserved

4.1 CGX Kernel Command Descriptions
The CGX module interface in it’s simplest form consists of the kernel block, the command block and a single
module interface, cgx_transfer_secure_kernel. Based on how the kernel and command blocks are populated when
cgx_transfer_secure_kernel is invoked, the CGX kernel will perform the requested function and return output as
appropriate. To aid the programmer in accessing CGX functionality, the CGX library is packaged with a set of
macros that will populate the command and kernel blocks appropriately and call cgx_transfer_secure_kernel.
These macros can be used for direct access to the user-mode implementation of CGX (IreCGX.dll for 3.18/3.18.1 or
SafeCGX.dll for 3.18.2).

Access to the kernel-mode implementation of CGX 3.18/3.18.1 (crypto.sys) is provided through the SafeNet
Cryptographic Service Provider via the Microsoft-defined API CryptoAPI. Access to the kernel-mode
implementation of CGX 3.18.2 (SafeCGX.sys) is provided through the CGX Cryptographic Service Provider via
that same API. CryptoAPI is a standard suite of API calls that allow applications to access cryptographic
functionality provided by Microsoft and other vendors’ CSPs. Using CryptoAPI, the application can indicate which
CSP it wants to use and the cryptographic function it would like to perform such as encrypt, decrypt, etc. The CSP
acts as the translator between the CryptoAPI call and the vendor-implemented cryptographic function to be
performed. More information on using the CryptoAPI can be obtained on the Microsoft MSDN web site
(http://msdn.microsoft.com/library/default.asp?url=/library/en-us/security/security/cryptography_reference.asp).

The following is a brief description of the functionality available within the CGX module, referenced by the
SafeNet-defined macro names.

CGX _INIT initializes the CGX Kernel, runs a set of basic self-tests, and allows the caller to configure two classes
of configuration settings:

- Increase the default number of Key Cache Registers (from 15 up to 700)

- Specify various configuration parameters associated with the CGX Kernel (via the Kernel Configuration
String)

CGX _DEFAULT initializes the CGX Kernel, and restores application-definable settings to factory defaults. This
command is typically used to reset any customized settings which may have previously been selected using CGX
_INIT.

CGX _RANDOM gets bytes of random data from the pseudo random number generator.

CGX _GET_CHIPINFO provides information about the secure kernel, including the revision level of the hardware
and CGX firmware and the current settings of the Program Control Data Bits (PCDBs).

CGX _ZEROIZE_KEYS is used to delete all of the KCRs including the LSV from KCR 0. Furthermore, it exits
from the CGX library.

CGX _SELF_TEST initializes and tests the CryptIC and the CGX kernel. The Self Test command restores the
CGX kernel to factory defaults upon completion. If the application has customized the CGX kernel using the KCS
CGX _INIT must be run again to restore application-definable settings.

CGX _GEN_KEK generates an internal key encryption key using the CGX’s pseudo random number generator and
places it into the specified Key Cache Register.

CGX _GEN_KEY generates a symmetrical key using the CGX’s pseudo random number generator and places it
into the specified Key Cache Register. Optionally, the newly generated key may be returned to the caller in a Black
(DES or TDES encrypted) form. The random key bits are transformed into the secret key form as directed by the
type of secret key specified in the argument interface.

CGX _DERIVE_KEY (non-FIPS compliant) allows a user secret key to be created from an application’s pass-
phrase. The secret key is derived by taking the one-way Hash of the application’s pass phrase and using the
resulting message digest as the secret key bits. The ‘raw’ message digest bits are transformed into the secret key

SafeNet, Inc. CGX Cryptographic Module Version 3.18/3.18.1/3.18.2 - Security Policy Level 2

* SafeNet Non-Proprietary * - 14 - Rev 1.5
© 2006 SafeNet, Inc. All rights reserved

form as directed by the type of secret key specified (i.e. key_type) in the argument interface and placed into the
specified Key Cache Register.

CGX _TRANSFORM_KEY allows a user supplied black secret key into a hash digest to be used as a precompute
in the PRF functions or in an HMAC operation.

CGX _MERGE_KEY takes key material from two secret keys and combines the material to form a third secret
key. The key material in two input keys, key1 and key2, is combined in a caller-specified way. The possible
combine operations are concatenate, exclusive-or, and hash. The resulting material (or the leading bytes of the
resulting material, if the resulting material is more than needed to create the new key) becomes the key material for a
new key. Three or more input keys may be combined by merging the output of one merge_key operation with yet
another input key, and repeating this step as often as necessary.

CGX _UNCOVER_KEY decrypts the Black secretkey, bk, to a Red form and places it into the key cache register
(KCR) indicated by the input argument, destkey. A Black secret key is defined as a key stored in SafeNet internal
format (which has therefore been encrypted and authenticated with a keyed hash). This allows an application to
securely store Black secret keys outside of CGX for later use by the CGX kernel.

CGX _LOAD_KEY is used to load a plaintext user secret key into a specified Key Cache Register. The secret key
to be loaded is in the Red form. Depending on the value of the use argument, the key can be used as either a KEK
or as a DEK. This key is known as a user key to the CGX Kernel and can never be covered by the LSV (the CGX
Kernel does not allow it).

CGX _EXPORT_KEY allows the application to move an SafeNet internal secret key form into an External secret
key form. The External secret key form must be covered either with a secret key or public key, this is specified by
the application via the command arguments.

CGX _IMPORT_KEY allows the application to load and create a SafeNet internal secret key from an External
secret key form.

CGX _LOAD_KG is used to load a DES/Triple DES secret key into the hardware crypto-engine (i.e. KG or key
generator) or an RC5 key into the RC5 software key generator (supported in the software CGX kernel model only).
The typical use of this command is to fully optimize secret key traffic by pre-loading the traffic key in advance or
for loading a different DKEK into the DKEK register of the hardware crypto-engine. In FIPS mode, this service is
not valid for the software CGX module.

CGX _DESTROY_KEY command is used to remove a secret key from the specified key cache register.

CGX _ENCRYPT is used to perform the symmetrical encryption of plain-text data and return the cipher-text to the
application in the specified buffer.

CGX _DECRYPT is used to perform the symmetrical decryption of cipher-text data and returning the plain-text to
the application in the specified buffer.

CGX _HASH_INIT (Initialize Hash) is used to initialize a Hash context block (data structure type hash_cntxt.) The
command is used in preparation for a Hash function computation. After initialization, the Hash context block may
subsequently be used as a parameter to a sequence of one or more CGX operations, such as CGX _HASH_DATA,
which perform the Hash computation. At any given time, an application may have several separate independent hash
computations in various stages of completion. Each hash computation will have its own dedicated hash context; each
context contains the current state information of its corresponding Hash computation. The computation types
supported are SHA-1 and MD5 one way Hash algorithms. Both Hash algorithms have a limit of 264 – 1 bits
cumulative input data length. Upon completion of this operation, the hash context will contain a NULL value in the
digest member of the hash_cntxt object (since the hash isn’t ‘closed’). When the hash computation is completed and
the context is closed, the digest member will contain a valid hash digest: i.e., the result of the hash computation.

CGX _HASH_DATA (Hash Data) is used to calculate a Hash value over data supplied by the calling application.
The hash value is computed over a stream of data octets (8-bit data bytes) which optionally may begin with a key
whose octets are treated as data to be hashed (thus creating a ‘keyed hash’), then may include a virtually unlimited
number of non-key data octets and optionally concludes with a trailing key whose octets are also treated as data to
be hashed. If both leading and trailing data keys are included in the hashed data stream, they may be the same or
different. For security reasons, a key may not be inserted into the middle of the data being hashed.

SafeNet, Inc. CGX Cryptographic Module Version 3.18/3.18.1/3.18.2 - Security Policy Level 2

* SafeNet Non-Proprietary * - 15 - Rev 1.5
© 2006 SafeNet, Inc. All rights reserved

CGX _HASH_ENCRYPT (Hash and Encrypt) is used to perform both a hash computation and a symmetrical
encryption of a data buffer. In a single call, the invoking application can encrypt a block of data and simultaneously
compute a hash function over the data block. The hash can be computed over the input data before encryption or
over the resulting data after encryption.

CGX _HASH_DECRYPT (Hash and Decrypt) operation is nearly identical to the CGX _HASH_ENCRYPT
operation. The essential difference is that this command uses the key referred to in the crypto context parameter to
perform a symmetric decryption, not an encryption. Typically, CGX _HASH_DECRYPT is used to decrypt a
message and also compute the message digest. This recovers the original plaintext and the message digest computed
by a CGX _HASH_ENCRYPT command. For this operation to be the logical inverse of a CGX
_HASH_ENCRYPT operation, all parameters to both operations should be logically equal, except the order
parameter, which should be reversed. (HASH-THEN-DECRYPT is the inverse of ENCRYPT-THEN-HASH.)
Some variance is naturally permitted within the term logically equal. For example, the keys must be equal, but can
reside in different KCRs and the key load options may, of course, vary. The message data input to
HASH_DECRYPT must have been produced by HASH_ENCRYPT, but the blocking into 64-bit–multiple segments
may vary from that used in the encryption.

CGX _PRF_DATA hashes one, two or three data items, of different types, into the inner hash of an HMAC being
generated. The items (in the order they are processed) are:

- a secret key (specified by argument secretkey *bk)

- a g^xy DH shared key specified in argument publickey *gxypk

RED data (specified in argument (VPTR)*dptr of a specified number of bytes (bytecount.)

CGX _PRF_KEY can be used to complete the IPsec HMAC. Command arguments supply two open hash contexts
known as the inner hash context and the outer hash context, both of which are covered. (Additional arguments
supply the crypto contexts needed to uncover the hash contexts.) The command closes the inner hash context (its
internal copy of the inner hash context – the caller’s copy is not affected.) Then it hashes the digest of the inner
hash context into the outer hash context. Then it closes the outer hash context (its copy of the outer hash context)
and creates a secretkey of type specified by the caller from the outer hash digest and returns the key, covered, to the
caller. It also leaves the created key in a specified key cache register, ready to use for encryption.

CGX _MERGE_LONG_KEY is quite similar to the CGX _MERGE_KEY command. The essential difference is
that the output key created by CGX _MERGE_LONG_KEY is not a data encryption key; rather it is merely a long
key that can be used subsequently (for example by command CGX _EXTRACT_LONG) to create encryption keys.
The output data type of CGX _MERGE_LONG_KEY is a container, not a true key; it is perhaps misnamed as a
longkey data type. A variable of this type can hold up to 64 bytes of key information. Such a data type provides
intermediate storage, for example, for the 48 bytes resulting from concatenating two 24 byte keys, which then can be
used (by CGX _EXTRACT_LONG) to produce an encryption key from the middle 24 bytes of the concatenation.
The CGX _MERGE_LONG_KEY command takes key material from two keys and combines the material to form a
new long key. The first input key, key1, may be either an ordinary encryption key (type secretkey) or a longkey.
The second input key, key2, must be an ordinary encryption key. The key material in two input keys, key1 and key2,
is combined in a caller-specified way. The possible combine operations are concatenate, exclusive-or, or hash. The
resulting material becomes the key material for the new key. Three or more input keys may be combined by
merging the output of one merge_long_key operation with yet another input key. One caveat to be observed is that
when the concatenate operation is requested, the user must ensure that the sum of the two lengths of the input keys
does not exceed the 64-byte maximum length of a long key.

CGX _EXTRACT_LONG_KEY creates a secret key from key material supplied within a longkey object. The
argument key1 is a longkey object supplied in the black along with a crypto_cntxt object to be used to uncover it.
Bytes are extracted from key1 starting at offset for length bytes. The operation will fail if the input longkey does not
contain length+offset bytes. A secret key, bk, is created from this key material using the type and use arguments. The
secret key is covered using bk_kek, and returned to the application.

CGX _GEN_PUBKEY will generate an entire public keyset comprised of the modulus, private, and public blocks.
This operation can create public keysets for several public key algorithms. This interface is over-loaded and
currently supports Diffie-Hellman, RSA, and DSA public keys. The returned keyset will consist of data stored in
little endian order.

SafeNet, Inc. CGX Cryptographic Module Version 3.18/3.18.1/3.18.2 - Security Policy Level 2

* SafeNet Non-Proprietary * - 16 - Rev 1.5
© 2006 SafeNet, Inc. All rights reserved

CGX _GEN_NEWPUBKEY is used to generate new public and private blocks for a Diffie-Hellman or DSA public
keyset. This command is only valid for Diffie-Hellman or DSA public keysets. The command allows the flexibility
to import a public key block from the application and use it to generate the new private and public blocks. The
application has control over which parts to generate and return via the two control constants CGX _X_V (the private
part) and CGX _Y_V (the public part). Using combinations of these control masks allows the application with a
flexible key generation interface.

CGX _GEN_NEGKEY will complete the Diffie-Hellman exchange by deriving the shared key from the receiver’s
public key. CGX supports dynamically negotiated keys as specified in the X9.42 Standard. This command also
supports the generation of a g^xy key blob. The key blob can be used as a component to the creation of IPsec
operations. This command is only used for Diffie-Hellman public keysets.

CGX _EXPORT_PUBKEY allows the application to move an SafeNet public keyset form into an external public
key form. The external form must be covered with a KEK, this is specified by the application via the command
arguments.

CGX _IMPORT_PUBKEY allows the application to move an external public key back into CGX in the SafeNet
public keyset form. The external form must be covered either with a secret key or public key, this is specified by the
application via the command arguments.

CGX _PUBKEY_ENCRYPT is used to encrypt the application’s data using the RSA encryption algorithms. This
operation also may be used to perform RSA signature verification using the public key component of a public
keyset.

CGX _PUBKEY_DECRYPT is used to decrypt the application’s data using the RSA encryption algorithms. This
operation also may be used to perform RSA signing using the private key of a public keyset.

CGX _SIGN command is used to sign the application’s message or message digest using the DSA digital signature
algorithm.

CGX _VERIFY is used to verify the signature of the application’s message using the DSA public key algorithm.

CGX _MATH is a set of cgx commands that perform various mathematical functions.

SafeNet, Inc. CGX Cryptographic Module Version 3.18/3.18.1/3.18.2 - Security Policy Level 2

* SafeNet Non-Proprietary * - 17 - Rev 1.5
© 2006 SafeNet, Inc. All rights reserved

4.2 Security Rules

 This section documents the security rules enforced by the cryptographic module to
implement the security requirements for the FIPS 140-2 Level 2 module except as noted.

1. The cryptographic module shall provide two distinct operator roles by virtue of the type of operation being

performed. These are the User Role, and the Cryptographic Officer Role.

2. The cryptographic Module provides role-based authentication via the Windows 2000 logon mechanism.

3. When the module has not been properly initialized, the operator shall not have access to any cryptographic
services and CGX will remain in the Error State.

4. Upon the application of power or when commanded by the operator, the cryptographic module shall
perform the following tests:
Triple DES Encryption/Decryption Algorithm Known Answer Test
DES Encryption/Decryption Algorithm Known Answer Test
SHA-1 Algorithm Known Answer Test
AES Encryption/Decryption Known Answer Test
HMAC Known Answer Test
Pseudo Random Number Generator Known Statistical Test
Pseudo Random Number Generator Known Answer Test
DSA Known Answer and Public Key Pair Tests
RSA Known Answer and Public Key Pair Tests
Diffie-Hellman Known Answer Test
Software/firmware integrity check

5. At any time the module is in an idle state, the operator shall be capable of commanding the module to
perform the power-up self test.

6. CGX utilizes the following cryptographic and hashing algorithms:

FIPS-Approved:

Cert #72 DES FIPS 81 and FIPS 46-3 (For use with legacy systems only)

 Electronic Code Book (ECB)
Cipher Block Chaining (CBC)
64-bit Output Feedback (OFB)
64-bit Cipher Feedback (CFB)

 Cert#11 TDES FIPS 46-3
 Electronic Code Book (ECB)

Cipher Block Chaining (CBC)
64-bit Output Feedback (OFB)
64-bit Cipher Feedback (CFB)

 Cert#75 AES FIPS 197
128, 192 and 256 bit keys

 Electronic Code Book (ECB)
Cipher Block Chaining (CBC)

 Cert#30 DSA FIPS 186-1
 Cert#30 SHA-1 FIPS 180-1
 Cert#30 (Vendor Affirmed) HMAC-SHA-1 FIPS 198

SafeNet, Inc. CGX Cryptographic Module Version 3.18/3.18.1/3.18.2 - Security Policy Level 2

* SafeNet Non-Proprietary * - 18 - Rev 1.5
© 2006 SafeNet, Inc. All rights reserved

NonFIPS-Approved

 RC5
 RSA encrypt/decrypt
 signatures
 Diffie-Hellman
 MD2
 MD5
 RIPEMD-128
 RIPEMD-160

7. Prior to each use, the internal Random Number Generator shall be tested using the Conditional test
specified in FIPS 140-2 §4.9.1.

8. The CGX cryptographic module must always be properly initialized prior to it being used. If an operator

attempts to execute a CGX command without first executing the CGX_Init command, then CGX will
automatically execute CXG_INIT on its own prior to processing the requested command.

9. Unencrypted (Red) keys can never be returned by CGX. All keys passed back to the caller are always

encrypted under a higher level KEK

10. Applications utilizing the CGX cryptographic module must conform to the requirements in FIPS 140-2. It

is the responsibility of the application not of the CGX cryptographic module to handle red key entry.

11. The CGX cryptographic module was written in the C high level language.

12. To operate the CGX module in FIPS mode, the following must be observed:

• The operating system and platform must be compliant with Common Criteria Validation Report

Number: CCEVS-VR-02-0025.
• Only the functions listed in section 4.1, CGX Kernel Command Descriptions should be used.
• Only the algorithms listed above as FIPS-approved should be used.
• The initialization block must be configured with an external HostKcrCache for 255 KCRs, and a

SA_Configuration setting of 1, SA_Entries of 0 and SA_Addr set to NULL.
• The Kernel Configuration String must contain the following settings:

flipsha = CGX_FLIP_SHA1_FINAL
flipgxy = TRUE
fips140_1 = TRUE
fips_enable = (CGX_FIPS_ENABLE_ALL_LOWER &
~CGX_FIPS_LOAD_ALTERNATE_LSV &
~CGX_FIPS_BIST_ENABLE_PRAM) |
CGX_FIPS_ENABLE_STRONG_PRNG |
CGX_FIPS_ENABLE_REDKEY |
CGX_FIPS_ENABLE_PAIRWISE |
CGX_FIPS_LOAD_ALTERNATE_LSV
fips_enable_upper = CGX_FIPS_ENABLE_ALL_UPPER

SafeNet, Inc. CGX Cryptographic Module Version 3.18/3.18.1/3.18.2 - Security Policy Level 2

* SafeNet Non-Proprietary * - 19 - Rev 1.5
© 2006 SafeNet, Inc. All rights reserved

4.3 Definition of Security Relevant Data Items (FIPS and Non-FIPS)

4.3.1 SYMMETRIC KEYS
• Data Encryption Key (DEK): This is a DES or Triple-DES key used to encrypt user traffic.

• Key Encryption Key (KEK): This is a DES or Triple-DES key used only to encrypt other keys.

• Generator Key Encryption Key (GKEK): This is a special Triple-DES key used only to encrypt other
keys, and is itself protected by the Local Storage Variable (LSV).

• Local Storage Variable (LSV): This is a unique Triple-DES key used as the root key to recover other
keys after a power outage. The LSV is always loaded into Key Cache Register #0. It cannot be
exported from CGX. The LSV is stored encrypted within the Windows Registry using TDES with a
hard-coded key.

• HMAC Key: This is the key used in HMAC-SHA-1.

4.3.2 ASYMMETRIC KEYS
• Public Key: This is the public component of an RSA, DSA or Diffie-Hellman key pair.

• Private Key: This is the private component of an RSA, DSA or Diffie-Hellman key pair.

4.3.3 OTHER OBJECTS
• Initialization Vector (IV): This is a 64 bit random number used to initialize the DES encryption

algorithm. Each algorithm is initialized with a unique IV, supplied by the application or from the
PRNG, for each message encrypted.

• Kernel Configuration String (KCS): This is a configuration string that sets-up certain features of the
CGX kernel during the Initialization process. Two of the relevant configuration options are:

o Enable FIPS 140-2 compliant RNG. This parameter turns on the ANSI X9.17 randomizer
which is applied to the random number entropy source, the X9.17 seed key only resides in
RAM, presented to CGX. This feature must be enabled for the FIPS 140-2 compliant version
of CGX.

o Allows the Crypto Officer to enable/disable red key parity checking from the Kernel
Configuration String.

• Key Attribute Bits: This is a bit-mapped field which is attached to any key and specifies its Type and
Use. The key type specifies whether the key is a DEK, KEK, etc.

• Key Cache Register (KCR): This is a volatile key storage house for a fixed number of secret keys. The
volatile key area is also referred to as the actively working keys. All cryptographic commands operate
only on the active volatile working keys.

• Authentication Data: Kerberos key and password.

SafeNet, Inc. CGX Cryptographic Module Version 3.18/3.18.1/3.18.2 - Security Policy Level 2

* SafeNet Non-Proprietary * - 20 - Rev 1.5
© 2006 SafeNet, Inc. All rights reserved

 List of Acronyms

* SafeNet Non-Proprietary * - 21 - Rev 1.5
© 2006 SafeNet, Inc. All rights reserved

4.4 Service to SRDI Access Operation
 SRDI

User Service

DE
K

KE
K

GK
EK

LS
V

Pu
bl

icK
ey

 P
ub

lic

Co
m

po
ne

nt

Pu
bl

icK
ey

Pr
iva

te

Co
m

po
ne

nt

IV

KC
S

Ke
yA

ttr
ib

ut
e B

its

KC
R

CGX_INIT R R W
CGX_DEFAULT R R W
CGX_RANDOM
CGX_GET_CHIPINFO
CGX_ZEROIZE_KEYS D
CGX_SELF_TEST RW RW RW
 Symmetric Key Commands
CGX_UNCOVER_KEY RW RW RW RW RW RW
CGX_GEN_KEK RW R RW RW RW
CGX_GEN_KEY RW RW R RW RW RW
CGX_LOAD_KEY RW RW R RW RW RW
CGX_DERIVE_KEY RW RW R RW RW RW
CGX_TRANSFORM_KEY RW RW RW RW R
CGX_EXPORT_KEY M M RW R R
CGX_IMPORT_KEY M M RW W R
CGX_DESTROY_KEY D
CGX_LOAD_KG R R
CGX_ENCRYPT R RW R R
CGX_DECRYPT R RW R R
 Asymmetric Key Commands
CGX_GEN_PUBKEY R R W RW R R R
CGX_GEN_NEWPUBKEY R R W RW R R R
CGX_GEN_NEGKEY RW RW R R R R R
CGX_PUBKEY_ENCRYPT R R R R R R
CGX_PUBKEY_DECRYPT R R R R R R
CGX_IMPORT_PUBKEY R M R R R
CGX_EXPORT_PUBKEY R M R R R
 Digital Signature Commands
CGX_SIGN R R R RW R R
CGX_VERIFY R R R R R
 Hash Commands
CGX_HASH_INIT
CGX_HASH_DATA
CGX_HASH_ENCRYPT R RW R
CGX_HASH_DECRYPT R RW R
 Prf Commands
CGX_PRF_DATA R R R R RW R R
CGX_PRF_KEY RW RW R R RW R R
CGX_MERGE_KEY RW R R R R
CGX_MERGE_LONG_KEY RW R R R R
CGX_EXTRACT_LONG_KEY RW RW R R R
 Math Commands
CGX_MATH

R = Read W = Write M = Modify D = Delete

Table C4. Access Rights within Services

 List of Acronyms

* SafeNet Non-Proprietary * - 22 - Rev 1.5
© 2006 SafeNet, Inc. All rights reserved

Physical security on the Dell Optiplex GX400 is achieved via a hasp loop on the back panel of the casing that when
secured with a padlock creates a tamper-proof enclosure. The padlock must be a minimum 4-pin tumbler lock with a case
hardened 3/16 inch minimum steel shank. Master model #133DCM or equivalent.

Physical Security Mechanisms Recommended Frequency of

Inspection/Test
Inspection/Test Guidance Details

Lock secured Daily By Observation

Table C5. Inspection/Testing of Physical Security Mechanisms

Hasp Loop

for LockRear view of computer

5 Physical Security

 List of Acronyms

* SafeNet Non-Proprietary * - 23 - Rev 1.5
© 2006 SafeNet, Inc. All rights reserved

Mitigation of Other Attacks

Other Attacks Mitigation Mechanism Specific Limitations
Kocher Timing Analysis Attack Check for attack during Diffie-

Helman key generation.
None.

The Kocher Timing Analysis Attack is a timing attack theory developed by Paul Kocher, President of
Cryptography Research Inc. The basis of the theory is that by carefully measuring the amount of time
required to perform private key generation, attackers may be able to find the fixed Diffie-Hellman
exponents, factor RSA keys, and break other cryptosystems. CGX mitigates this type of attack by always
performing the multiply in the inner square loop of exponentiation which results in constant time, and has
implemented RSA blinding for RSA decryption.

.

 List of Acronyms

* SafeNet Non-Proprietary * - 24 - Rev 1.5
© 2006 SafeNet, Inc. All rights reserved

Acronym Description
AES Advanced Encryption Standard
API Application Programming Interface
CGX CryptoGraphic eXtensions
DEK Data Encryption Key
DES Data Encryption Standard
D-H Diffie-Helman
DSA Digital Signature Algorithm
EMC Electromagnetic Compatibility
EMI Electromagnetic Interference
FIPS Federal Information Processing Standard
GKEK Generator Key Encryption Key
HMAC Hash Message Authentication Code
IPsec Internet Protocol Security
ITSEC Information Technology Security Evaluation Criteria
IV Initialization Vector
KAT Known Answer test
KCR Key Cache Register
KCS Kernel Configuration String
KEK Key Encryption Key
KG Key Generator
LSV Local Storage Variable
MD5 Message Digest 5
OS Operating System
PC Personal Computer
PCDB Program Control Data Bit
PRAM Program Random Access Memory
PRF Pseudo Random Function
PRNG PseudoRandom Number Generator
RAM Random Access Memory
RNG Random Number Generator
RSA Rivest Shamir Adleman
SRDI Security Relevant Data Items
SHA-1 Secure Hash Algorithm

List of Acronyms

