
Red Hat Enterprise Linux 6.6 NSS Module v3.14.3-22

FIPS 140-2 Security Policy

version 0.7

Last Update: 2016-02-12

Red Hat Enterprise Linux 6.6 NSS Module Version 3.14.3-22 FIPS 140-2 Security Policy

Table of Contents
1.Cryptographic Module Specification ... 3

1.1.Description of the Module ... 3
1.2.Description of the Approved Modes ..4
1.3.Cryptographic Boundary.. 6

1.3.1.Hardware Block Diagram... 7
1.3.2.Software Block Diagram.. 7

2.Cryptographic Module Ports and Interfaces ..9
2.1.PKCS #11.. 9
2.2.Inhibition of Data Output.. 9
2.3.Disconnecting the Output Data Path from the Key Processes...10

3.Roles, Services and Authentication.. 11
3.1.Roles.. 11
3.2.Role Assumption.. 11
3.3.Strength of Authentication Mechanism...11
3.4.Multiple Concurrent Operators...12
3.5.Services... 12

3.5.1.Calling Convention of API Functions..12
3.5.2.API Functions.. 13

4.Physical Security .. 22
5.Operational Environment .. 23

5.1.Policy .. 23
6.Cryptographic Key Management... 24

6.1.Random Number Generation... 25
6.2.Key/CSP Access And Storage...26
6.3.Key/CSP Zeroization.. 26

7.Electromagnetic Interference/Electromagnetic Compatibility (EMI/EMC) ...27
8.Self-Tests .. 28

8.1.Power-Up Tests... 28
8.2.Conditional Tests... 28

9.Guidance... 30
9.1.Crypto Officer Guidance ... 30

9.1.1.Access to Audit Data..31
9.2.User Guidance... 31

9.2.1.AES GCM Guidance.. 32
9.2.2.RSA and DSA Keys... 32

9.3.Handling Self-Test Errors ..32
10.Mitigation of Other Attacks... 33
11.Glossary and Abbreviations... 34
12.References.. 35

© 2016 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 2 of 36

Red Hat Enterprise Linux 6.6 NSS Module Version 3.14.3-22 FIPS 140-2 Security Policy

1. Cryptographic Module Specification
This document is the non-proprietary security policy for the Red Hat Enterprise Linux 6.6 NSS
Module, and was prepared as part of the requirements for conformance to Federal Information
Processing Standard (FIPS) 140-2, Level 2.

1.1. Description of the Module

The Red Hat Enterprise Linux 6.6 NSS Module (hereafter referred to as the “Module”) version
3.14.3-22 is a software library supporting FIPS 140-2 approved cryptographic algorithms. For the
purposes of the FIPS 140-2 validation, its embodiment type is defined as multi-chip standalone.
The NSS cryptographic module is an open-source, general-purpose cryptographic library, with an
API based on the industry standard PKCS #11 version 2.20. It combines a vertical stack of Linux
components intended to limit the external interface each separate component may provide.

The Module is FIPS 140-2 validated at overall Security Level 2 with levels for individual sections
shown in the table below:

Security Component FIPS 140-2 Security Level

Cryptographic Module Specification 2

Cryptographic Module Ports and Interfaces 2

Roles, Services and Authentication 2

Finite State Model 2

Physical Security N/A

Operational Environment 2

Cryptographic Key Management 2

EMI/EMC 2

Self-Tests 2

Design Assurance 2

Mitigation of Other Attacks 2

Table 1: Security Level of the Module

The Module has been tested on the following platforms:

Manufacturer Model O/S & Ver.

HP (Hewlett-Packard) ProLiant DL380p Gen8 Red Hat Enterprise Linux 6.6

IBM (International
Business Machines)

System x3500 M4 Red Hat Enterprise Linux 6.6

Table 2: Tested Platforms

On each of the tested platforms listed above, the Module has been tested for the following
configurations:

• 32-bit x86_64 with and without AES-NI enabled

• 64-bit x86_64 with and without AES-NI enabled

© 2016 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 3 of 36

Red Hat Enterprise Linux 6.6 NSS Module Version 3.14.3-22 FIPS 140-2 Security Policy

1.2. Description of the Approved Modes

The Module supports the following FIPS 140-2 approved algorithms:

Algorithm Validation
Certificate

Usage Keys/CSPs

AES
• CBC
• ECB
• CTR
• GCM

Certs. 3076, 3077,
3078, 3079, 3080,
3081, 3082, 3083,
3084, 3085, 3086,
3087

encrypt/decrypt AES keys 128, 192, 256 bits

Triple-DES
• CBC
• ECB

Certs. 1776, 1777,
1778, 1779

encrypt/decrypt Triple-DES keys 168 bits

FIPS 186-4 DSA2 Certs. 892, 893,
894, 895

sign, verify, key
generation,
domain
parameters
generation and
verification

DSA keys
L=2048, N=224
L=2048, N=256
L=3072, N=256

FIPS 186-4 DSA2 Certs. 892, 893,
894, 895

verify DSA keys L=1024, N=160

FIPS 186-4 RSA2
(PKCS #1.5)

Certs. 1577, 1578,
1579, 1580

sign, verify, and
key generation

RSA keys 2048, 3072 bits

FIPS 186-4 RSA2
(PKCS #1.5)

Certs. 1577, 1578,
1579, 1580

verify RSA keys 1024 bits

ECDSA Certs. 554, 555,
556, 557

sign, verify, and
key generation

ECDSA keys based on P-256, P-384,
or P-521 curve

SP 800-90A Hash
DRBG SHA-256

Certs. 603, 604,
605, 606

random number
generation

Entropy input string, V and C

SHA-1
SHA-224
SHA-256
SHA-384
SHA-512

Certs. 2549, 2550,
2551, 2552

hashing N/A

HMAC-SHA-1
HMAC-SHA224
HMAC-SHA256
HMAC-SHA384
HMAC-SHA512

Certs. 1933, 1934,
1935, 1936

message
integrity

At least 112 bits HMAC Key

PRF as used in
• TLSv1.0
• TLSv1.1
• TLSv1.2

CVL Certs. 368, 369,
370, 371

Key derivation Pre-master secret

Table 3: Approved Algorithms

© 2016 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 4 of 36

Red Hat Enterprise Linux 6.6 NSS Module Version 3.14.3-22 FIPS 140-2 Security Policy

The Module supports AES-NI in 64-bit mode as the default option. In addition, C implementation of
AES is available as a fall back option when the AES-NI capable CPU does not present in the
Operational Environment.

The Module supports the following FIPS 140-2 non-approved but allowed algorithms:

Algorithm Validation
Certificate

Usage Keys/CSPs

AES key wrapping
(128, 192, 256 bits)

N/A Key wrapping
according to
SP800-38F

AES keys

AES key wrapping
(128, 192, 256 bits)

N/A AES key
wrapping using
AES Encryption

AES keys

Triple-DES key
wrapping
(168 bits)

N/A Triple-DES key
wrapping using
Triple-DES
encryption

Triple-DES keys

RSA (encrypt,
decrypt) with key
size equal or larger
than 2048 bits

N/A Key wrapping RSA keys

Diffie-Hellman with
domain parameters
larger or equal to
2048 bits

N/A Key agreement Diffie-Hellman private keys

EC Diffie-Hellman
with curves P-256,
P-384, P-521

N/A Key agreement EC Diffie-Hellman private keys

Table 4: Non-approved but allowed Algorithms

According to Table 2: Comparable strengths in NISP SP 800-57 Part1 (dated on March 8, 2007), the
key sizes of RSA, Diffie-Hellman and EC Diffie-Hellman provides the following security strength for
the corresponding key establishment method shown below:

1. AES (key wrapping; key establishment methodology provides between 128 and 256 bits of
encryption strength)

2. Triple-DES (key wrapping; key establishment methodology provides 112 bits of encryption
strength)

3. RSA (key wrapping; key establishment methodology provides between 112 and 256 bits of
encryption strength; non-compliant less than 112 bits of encryption strength)

4. Diffie-Hellman (key agreement; key establishment methodology provides between 112 and
256 bits of encryption strength; non-compliant less than 112 bits of encryption strength)

5. EC Diffie-Hellman (key agreement; key establishment methodology provides between 128
and 256 bits of encryption strength)

However, the size alone does not determine the security strength of the RSA, Diffie-Hellman and
EC Diffie-Hellman keys. Since the seed source for key generation is outside the logical boundary of
the module, the following caveat is applicable:

The module generates cryptographic keys whose strengths are modified by available entropy.

© 2016 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 5 of 36

Red Hat Enterprise Linux 6.6 NSS Module Version 3.14.3-22 FIPS 140-2 Security Policy

The Module supports the following non-FIPS 140-2 approved algorithms:

Algorithm Usage Keys/CSPs

MD5 message digest N/A

MD2 message digest N/A

RC2 Encrypt/decrypt RC2 key

Camellia Encrypt/decrypt Camellia key

J-PAKE Key exchange

DES Encrypt/Decrypt DES key

SEED Encrypt/Decrypt SEED key

CTS block chaining mode Block chaining mode N/A

DSA with key sizes not listed in
Table 3

sign, verify, and key
generation

DSA keys

RSA with key sizes not listed in
Table 3

sign, verify, and key
generation

RSA keys

Diffie-Hellman with domain
parameters smaller than 2048
bits

Key agreement Diffie-Hellman private keys

RSA (encrypt, decrypt) with
key size smaller than 2048 bits

Key wrapping RSA keys

Table 5. Non-Approved Algorithms

1.3. Cryptographic Boundary

The Module's physical boundary is the surface of the case of the platform (depicted in the
hardware block diagram).

The Module's logical cryptographic boundary consists of the shared library files and their integrity
check signature files, which are delivered through Red Hat Package Manager (RPM) as listed below:

• NSS softoken RPM file with version 3.14.3-22.el6, which contains the following files:

◦ /usr/lib64/libnssdbm3.chk (64 bits)

◦ /usr/lib64/libnssdbm3.so (64 bits)

◦ /usr/lib64/libsoftokn3.chk (64 bits)

◦ /usr/lib64/libsoftokn3.so (64 bits)

◦ /usr/lib/libnssdbm3.chk (32 bits)

◦ /usr/lib/libnssdbm3.so (32 bits)

◦ /usr/lib/libsoftokn3.chk (32 bits)

◦ /usr/lib/libsoftokn3.so (32 bits)

• NSS freebl RPM file with version 3.14.3-22.el6, which contains the following files:

◦ /lib64/libfreeblpriv3.chk (64 bits)

© 2016 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 6 of 36

Red Hat Enterprise Linux 6.6 NSS Module Version 3.14.3-22 FIPS 140-2 Security Policy

◦ /lib64/libfreeblpriv3.so (64 bits)

◦ /lib/libfreeblpriv3.chk (32 bits)

◦ /lib/libfreeblpriv3.so (32 bits)

The module shall be installed and instantiated by the dracut-fips package with the RPM file version
004-356.el6_6.1. The dracut-fips RPM package is only used for the installation and instantiation of
the Module. This code is not active when the Module is operational and does not provide any
services to users interacting with the Module. Therefore the dracut-fips package is outside the
Module's logical boundary.

1.3.1. Hardware Block Diagram

Figure 1. Hardware Block Diagram

1.3.2. Software Block Diagram

The NSS cryptographic module implements the PKCS #11 (Cryptoki) API. The API itself defines the
logical cryptographic boundary, thus all implementation is inside the boundary. The diagram below
shows the relationship of the layers.

© 2016 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 7 of 36

Red Hat Enterprise Linux 6.6 NSS Module Version 3.14.3-22 FIPS 140-2 Security Policy

Figure 2. Software Block Diagram

© 2016 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 8 of 36

libsoftokn3.so

libfreeblpriv3.so libnssdbm3.so

NSS PKCS #11 Interface

Cryptographic Boundary

libnspr4.so
libplc4.so
libpld4.so

Operating System

Red Hat Enterprise Linux 6.6 NSS Module Version 3.14.3-22 FIPS 140-2 Security Policy

2. Cryptographic Module Ports and Interfaces
The physical ports of the Module are the same as the computer system on which it executes. The
logical interface is a C-language Application Program Interface (API) following the PKCS #11 API.

The Data Input interface consists of the input parameters of the API functions. The Data Output
interface consists of the output parameters of the API functions. The Control Input interface
consists of the actual API functions. The Status Output interface includes the return values of the
API functions. The ports and interfaces are shown in the following table.

FIPS Interface Physical Port Module Interface

Data Input N/A API input parameters, kernel I/O – files on
filesystem

Data Output N/A API output parameters, kernel I/O – files on
filesystem

Control Input N/A API function calls, kernel I/O
(/proc/sys/crypto/fips_enabled)

Status Output N/A API function calls

Power Input PC Power Supply Port N/A

Table 6: Ports and Interfaces

The NSS cryptographic module uses different function arguments for input and output to
distinguish between data input, control input, data output, and status output, to disconnect the
logical paths followed by data/control entering the module and data/status exiting the module. The
NSS cryptographic module doesn't use the same buffer for input and output. After the NSS
cryptographic module is done with an input buffer that holds security-related information, it always
zeroizes the buffer so that if the memory is later reused as an output buffer, no sensitive
information may be inadvertently leaked.

2.1. PKCS #11

The logical interfaces of the NSS cryptographic module consist of the PKCS #11 (Cryptoki) API. The
API itself defines the cryptographic boundary, i.e., all access to the cryptographic module is
through this API. The module has three PKCS #11 tokens: two tokens that implement the non-FIPS
Approved mode of operation, and one token that implements the FIPS Approved mode of
operation. The FIPS PKCS #11 token is designed specifically for FIPS 140-2, and allows applications
using the NSS cryptographic module to operate in a strictly FIPS mode.

The functions in the PKCS #11 API are listed in the table in the section about Specification of
Services.

2.2. Inhibition of Data Output

All data output via the data output interface is inhibited when the NSS cryptographic module is in
the Error state or performing self-tests.

• In Error State: The Boolean state variable sftk_fatalError tracks whether the NSS
cryptographic module is in the Error state. Most PKCS #11 functions, including all the
functions that output data via the data output interface, check the sftk_fatalError state

© 2016 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 9 of 36

Red Hat Enterprise Linux 6.6 NSS Module Version 3.14.3-22 FIPS 140-2 Security Policy

variable and, if it is true, return the CKR_DEVICE_ERROR error code immediately. Only the
functions that shut down and restart the module, reinitialize the module, or output status
information can be invoked in the Error state. These functions are FC_GetFunctionList,
FC_Initialize, FC_Finalize, FC_GetInfo, FC_GetSlotList, FC_GetSlotInfo,
FC_GetTokenInfo, FC_InitToken, FC_CloseSession, FC_CloseAllSessions, and
FC_WaitForSlotEvent.

• During Self-Tests: The NSS cryptographic module performs power-up self-tests in the
FC_Initialize function. Since no other PKCS #11 function (except FC_GetFunctionList)
may be called before FC_Initialize returns successfully, all data output via the data
output interface is inhibited while FC_Initialize is performing the self-tests.

2.3. Disconnecting the Output Data Path from the Key
Processes

During key generation and key zeroization, the NSS cryptographic module may perform audit
logging, but the audit records do not contain sensitive information. The NSS cryptographic module
does not return the function output arguments until key generation or key zeroization is finished.
Therefore, the logical paths used by output data exiting the module are logically disconnected
from the processes/threads performing key generation and key zeroization.

© 2016 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 10 of 36

Red Hat Enterprise Linux 6.6 NSS Module Version 3.14.3-22 FIPS 140-2 Security Policy

3. Roles, Services and Authentication
This section defines the roles, services, and authentication mechanisms and methods with respect
to the applicable FIPS 140-2 requirements.

3.1. Roles

There are two users of the Module:

• The NSS User role has access to all cryptographically secure services of the module (those
that use the secret and private keys of the module) and is also responsible for the retrieval,
updating, and deletion of keys from the private key database.

• The Crypto Officer role is supported for the installation of the module. Also, the crypto
officer role can access other general-purpose services (such as message digest and random
number generation services) and status services of the module. The Crypto-Officer does
not have access to any service that utilizes the secret or private keys of the module. The
Crypto-Officer must control the access to the module both before and after installation.
Control consists of management of physical access to the computer, executing the NSS
cryptographic module code as well as management of the security facilities provided by the
operating system.

3.2. Role Assumption

The NSS cryptographic module implements a NSS User role and a Crypto-Officer role. The Crypto-
Officer role is implicitly assumed by an operator while installing the module by following the
instructions in the “Security Rules” section of this document and while performing the Crypto-
Officer services on the module.

The module also implements a password-based authentication for the NSS User role. To perform
sensitive NSS User role services using the cryptographic module, an operator must log into the
module and perform an authentication procedure using the password information unique to the
NSS User role operator. When passwords are passed via the API functions as input arguments,
there is no visible display of the passwords, and the only feedback mechanism is the function
return value. The function return value does not provide information that could be used to guess or
determine the user's password. The password is initialized by the Crypto-Officer role as part of
module initialization and can be changed by the NSS User role operator.

If a User-role service is called before the operator is authenticated, it returns the
CKR_USER_NOT_LOGGED_IN error code. The operator must call the FC_Login function to provide the
required authentication.

Once a password has been established for the NSS cryptographic module, the module allows the
user to use the private services if and only if the user successfully authenticates to the module.
Password establishment and authentication are required for the operation of the module.

3.3. Strength of Authentication Mechanism

In the FIPS Approved mode, the NSS cryptographic module imposes the following requirements on
the password. These requirements are enforced by the module on password initialization or
change.

• The password must be at least seven characters long.

© 2016 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 11 of 36

Red Hat Enterprise Linux 6.6 NSS Module Version 3.14.3-22 FIPS 140-2 Security Policy

• The password must consist of characters from three or more character classes. We define
five character classes: digits (0-9), ASCII lowercase letters, ASCII uppercase letters, ASCII
non-alphanumeric characters (such as space and punctuation marks), and extended ASCII
characters (accents such as 'é', 'è', special letters such as 'ß', 'å', or special characters such
as '¿'). If an ASCII uppercase letter is the first character of the password, the uppercase
letter is not counted toward its character class. Similarly, if a digit is the last character of
the password, the digit is not counted toward its character class.

To estimate the probability that a random guess of the password will succeed, we assume that:

• the characters of the password are independent with each other, and

• the probability of guessing an individual character of the password is less than 1/10: the
smallest class is the digit class (0-9) which size is 10. The probability for guessing every
character is smaller than the probability of guessing the character if it was a digit, which is
1/10

Therefore, since the password is at least 7 characters long, the probability that a random guess of
the password will succeed is less than (1/10)^7 = 1/10,000,000, which is smaller than the required
threshold 1/1,000,000.

After each failed authentication attempt in the FIPS Approved mode, the NSS cryptographic
module inserts a one-second delay before returning to the caller, allowing at most 60
authentication attempts during a one-minute period. Therefore, the probability of a successful
random guess of the password during a one-minute period is less than 60 * 1/10,000,000 = 0.6 *
(1/100,000).

3.4. Multiple Concurrent Operators

The NSS cryptographic module doesn't allow concurrent operators.

• On a multi-user operating system, this is enforced by making the NSS certificate and
private key databases readable and writable by the owner of the files only.

Note: FIPS 140-2 Implementation Guidance Section 6.1 clarifies the use of a cryptographic module
on a server.

When a cryptographic module is implemented in a server environment, the server application is
the user of the cryptographic module. The server application makes the calls to the cryptographic
module. Therefore, the server application is the single user of the cryptographic module, even
when the server application is serving multiple clients.

3.5. Services

3.5.1. Calling Convention of API Functions

The NSS cryptographic module has two parallel sets of API functions, FC_xxx and NSC_xxx, that
implement the FIPS Approved and non-FIPS Approved modes of operation, respectively. For
example, FC_Initialize initializes the module's library for the FIPS Approved mode of operation,
whereas its counterpart NSC_Initialize initializes the library for the non-FIPS Approved mode of
operation. If an application initialized and uses both the FIPS Approved and non-FIPS Approved
interfaces, each interface will contain it's own CSP which are not shared by the other interface. For
an application to be in FIPS mode it must have only the FIPS Approved interfaces open. All the API
functions for the FIPS Approved mode of operation are listed in the Specification of Services
section.

© 2016 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 12 of 36

Red Hat Enterprise Linux 6.6 NSS Module Version 3.14.3-22 FIPS 140-2 Security Policy

Among the module's API functions, only FC_GetFunctionList and NSC_GetFunctionList are
exported and therefore callable by their names. (The C_GetFunctionList function is also exported
and is just a synonym of NSC_GetFunctionList.) All the other API functions must be called via the
function pointers returned by FC_GetFunctionList or NSC_GetFunctionList.
FC_GetFunctionList and NSC_GetFunctionList each return a CK_FUNCTION_LIST structure
containing function pointers named C_xxx such as C_Initialize and C_Finalize. The C_xxx
function pointers in the CK_FUNCTION_LIST structure returned by FC_GetFunctionList point to
the FC_xxx functions, whereas the C_xxx function pointers in the CK_FUNCTION_LIST structure
returned by NSC_GetFunctionList point to the NSC_xxx functions.

The following convention is used to describe API function calls. Again, FC_Initialize and
NSC_Initialize are used as examples:

• When mentioned “call FC_Initialize,” the technical equivalent of “call the
FC_Initialize function via the C_Initialize function pointer in the CK_FUNCTION_LIST
structure returned by FC_GetFunctionList” is implied.

• When mentioned “call NSC_Initialize,” the technical equivalent of “call the
NSC_Initialize function via the C_Initialize function pointer in the CK_FUNCTION_LIST
structure returned by NSC_GetFunctionList” is implied.

3.5.2. API Functions

Cryptographic module services consists of Crypto-Officer services, which require no operator
authentication, and User services, which require operator authentication. Crypto-Officer services
do not require access to the secret and private keys and other critical security parameters (CSPs)
associated with the user. Note: CSPs are security-related information (e.g. secret and private keys,
and authentication data such as passwords) whose disclosure or modification can compromise the
security of a cryptographic module. Message digesting services are available to Crypto-Officer only
when CSPs are not accessed. Services which access CSPs (e.g., FC_GenerateKey,
FC_GenerateKeyPair) require authentication. The table below lists each service as an API function
and correlates role, service type, and type of access to the cryptographic keys and CSPs. Access
types R, W, and Z stand for Read, Write, and Zeroize, respectively.

Note: The message digesting functions (except FC_DigestKey) are allowed to the Crypto-Officer
role and do not require NSS User role authentication to the module. These services do not use any
keys of the module. FC_DigestKey computes the message digest (hash) of the value of a secret
key, so it is available only to the NSS User role.

The list of algorithms supported by the Module is given in Table 3. For the column 'Role', 'U'
corresponds to 'NSS User role' and 'CO' corresponds to 'Crypto Officer role'.

Service Rol
e

Function Description CSPs Acc

FIPS 140-2
specific

CO FC_GetFunctionList returns the list of
function pointers for
the FIPS Approved
mode of operation

none -

© 2016 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 13 of 36

Red Hat Enterprise Linux 6.6 NSS Module Version 3.14.3-22 FIPS 140-2 Security Policy

Service Rol
e

Function Description CSPs Acc

Module
initializatio

n

CO FC_InitToken initializes or
reinitializes a token

User password and all
keys

Z

CO FC_InitPIN initializes the user's
password, i.e., sets
the user's initial
password

User password W

General
Purpose

CO FC_Initialize initializes the
module library for
the FIPS approved
mode of
operation. This
function provides the
power-up self-test
service.

none -

CO FC_Finalize finalizes (shuts
down) the module
library

All keys Z

CO FC_GetInfo obtains general
information about
the module library

none -

Slot and
token

manageme
nt

CO FC_GetSlotList obtains a list of slots
in the system

none -

CO FC_GetSlotInfo obtains information
about a particular
slot

none -

CO FC_GetTokenInfo obtains information
about the token. This
function provides the
Show Status service.

none -

CO FC_WaitForSlotEven
t

This function is not
supported by the
NSS cryptographic
module.

none -

CO FC_GetMechanismLis
t

obtains a list of
mechanisms
(cryptographic
algorithms)
supported by a token

none -

CO FC_GetMechanismInf
o

obtains information
about a particular
mechanism

none -

© 2016 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 14 of 36

Red Hat Enterprise Linux 6.6 NSS Module Version 3.14.3-22 FIPS 140-2 Security Policy

Service Rol
e

Function Description CSPs Acc

U FC_SetPIN changes the user's
password

User password RW

Session
manageme

nt

CO FC_OpenSession opens a connection
("session") between
an application and a
particular token

none -

CO FC_CloseSession closes a session All keys for the
session

Z

CO FC_CloseAllSession
s

closes all sessions
with a token

All keys Z

CO FC_GetSessionInfo obtains information
about the session.
This function
provides the Show
Status service.

none -

CO FC_GetOperationSta
te

saves the state of
the cryptographic
operation in a
session. This
function is only
implemented for
message digest
operations.

none -

CO FC_SetOperationSta
te

restores the state of
the cryptographic
operation in a
session. This
function is only
implemented for
message digest
operations.

none -

U FC_Login logs into a token User password R

U FC_Logout logs out from a
token

none -

Object
manageme

nt

U FC_CreateObject creates an object key W

U FC_CopyObject creates a copy of an
object

Original key R

New key W

U FC_DestroyObject destroys an object key Z

U FC_GetObjectSize obtains the size of
an object in bytes

key R

U FC_GetAttributeVal
ue

obtains an attribute
value of an object

key R

© 2016 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 15 of 36

Red Hat Enterprise Linux 6.6 NSS Module Version 3.14.3-22 FIPS 140-2 Security Policy

Service Rol
e

Function Description CSPs Acc

U FC_SetAttributeVal
ue

modifies an attribute
value of an object

key W

U FC_FindObjectsInit initializes an object
search operation

none -

U FC_FindObjects continues an object
search operation

Keys matching the
search criteria

R

U FC_FindObjectsFina
l

finishes an object
search operation

none -

Encryption
and

decryption

U FC_EncryptInit initializes an
encryption operation

AES / Triple-DES
encryption key

R

U FC_Encrypt Encrypts single-part
data

AES / Triple-DES
encryption key

R

U FC_EncryptUpdate continues a multiple-
part encryption
operation

AES / Triple-DES
encryption key

R

U FC_EncryptFinal finishes a multiple-
part encryption
operation

AES / Triple-DES
encryption key

R

U FC_DecryptInit initializes a
decryption operation

AES / Triple-DES
encryption key

R

U FC_Decrypt decrypts single-part
encrypted data

AES / Triple-DES
encryption key

R

U FC_DecryptUpdate continues a multiple-
part decryption
operation

AES / Triple-DES
encryption key

R

U FC_DecryptFinal finishes a multiple-
part decryption
operation

AES / Triple-DES
encryption key

R

Message
digest

CO FC_DigestInit initializes a
message-digesting
operation

none -

CO FC_Digest Digests single-part
data

none -

CO FC_DigestUpdate continues a multiple-
part digesting
operation

none -

U FC_DigestKey continues a multi-
part message-
digesting operation
by digesting the
value of a secret key
as part of the data

HMAC key R

© 2016 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 16 of 36

Red Hat Enterprise Linux 6.6 NSS Module Version 3.14.3-22 FIPS 140-2 Security Policy

Service Rol
e

Function Description CSPs Acc

already digested

CO FC_DigestFinal finishes a multiple-
part digesting
operation

none -

Signature
generation

and
verification

U FC_SignInit initializes a signature
operation

RSA / DSA / ECDSA
signing key, HMAC

key

R

U FC_Sign signs single-part
data

RSA / DSA / ECDSA
signing key, HMAC

key

R

U FC_SignUpdate continues a multiple-
part signature
operation

RSA / DSA / ECDSA
signing key, HMAC

key

R

U FC_SignFinal finishes a multiple-
part signature
operation

RSA / DSA / ECDSA
signing key, HMAC

key

R

U FC_SignRecoverInit initializes a signature
operation, where the
data can be
recovered from the
signature

RSA / DSA / ECDSA
signing key

R

U FC_SignRecover signs single-part
data, where the data
can be recovered
from the signature

RSA / DSA / ECDSA
signing key

R

U FC_VerifyInit initializes a
verification
operation

RSA / DSA / ECDSA
verification key,

HMAC key

R

U FC_Verify verifies a signature
on single-part data

RSA / DSA / ECDSA
verification key,

HMAC key

R

U FC_VerifyUpdate continues a multiple-
part verification
operation

RSA / DSA / ECDSA
verification key,

HMAC key

R

U FC_VerifyFinal finishes a multiple-
part verification
operation

RSA / DSA / ECDSA
verification key,

HMAC key

R

U FC_VerifyRecoverIn
it

initializes a
verification
operation where the
data is recovered
from the signature

RSA / DSA / ECDSA
verification key

R

U FC_VerifyRecover verifies a signature RSA / DSA / ECDSA R

© 2016 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 17 of 36

Red Hat Enterprise Linux 6.6 NSS Module Version 3.14.3-22 FIPS 140-2 Security Policy

Service Rol
e

Function Description CSPs Acc

on single-part data,
where the data is
recovered from the
signature

verification key

Dual-
function

cryptograp
hic

operations

U FC_DigestEncryptUp
date

continues a multiple-
part digesting and
encryption operation

RSA / DSA / ECDSA
encryption key

R

U FC_DecryptDigestUp
date

continues a multiple-
part decryption and
digesting operation

RSA / DSA / ECDSA
decryption key

R

U FC_SignEncryptUpda
te

continues a multiple-
part signing and
encryption operation

RSA / DSA / ECDSA
signing key, HMAC

key

R

RSA / DSA / ECDSA
encryption key

R

U FC_DecryptVerifyUp
date

continues a multiple-
part decryption and
verify operation

RSA / DSA / ECDSA
verification key,

HMAC key

R

RSA / DSA / ECDSA
decryption key

R

Key
manageme

nt

U FC_GenerateKey generates a secret
key (used by TLS to
generate premaster
secrets)

AES keys, Triple-DES
keys, TLS pre-master

secret

W

U FC_GenerateKeyPair generates a
public/private key
pair.
This function
performs the pair-
wise consistency
tests

RSA / DSA / ECDSA
key pair

W

U FC_WrapKey wraps (encrypts) a
key using one of the
following
mechanisms allowed
in FIPS mode
through December
31st 2017 per IG D.9:
(1) RSA encryption
(2) AES Key
Wrapping based on
SP 800-38F
(3) AES encryption
(4) Triple-DES
encryption

Wrapping key R

Key to be wrapped R

© 2016 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 18 of 36

Red Hat Enterprise Linux 6.6 NSS Module Version 3.14.3-22 FIPS 140-2 Security Policy

Service Rol
e

Function Description CSPs Acc

U FC_UnwrapKey unwraps (decrypts) a
key using one of the
following
mechanisms allowed
in FIPS mode
through December
31st 2017 per IG D.9:
(1) RSA decryption
(2) AES Key
Wrapping based on
SP 800-38F
(3) AES decryption
(4) Triple-DES
decryption

Unwrapping key R

Uwrapped key W

U FC_DeriveKey derives a key from a
master secret key
(used by TLS to
derive keys from the
master secret)

Master secret key R

Derived key W

Random
number

generation

CO FC_SeedRandom mixes in additional
seed material to the
random number
generator

entropy string for
seed, DRBG C and V
internal state values

RW

CO FC_GenerateRandom generates random
data. This function
performs the
continuous random
number generator
test.

random data, DRBG C
and V internal state

values

RW

Parallel
function

manageme
nt

CO FC_GetFunctionStat
us

a legacy function,
which simply returns
the value
0x00000051
(function not
parallel)

none -

CO FC_CancelFunction a legacy function,
which simply returns
the value
0x00000051
(function not
parallel)

none -

Table 7: Service Details

NOTE:

1. 'Original key' and 'New key' are the secret keys or public private key pairs.

2. 'Wrapping key' corresponds to the secret key or private key used to wrap another key

© 2016 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 19 of 36

Red Hat Enterprise Linux 6.6 NSS Module Version 3.14.3-22 FIPS 140-2 Security Policy

3. 'Key to be wrapped' is the key that is wrapped by the 'wrapping key'

4. 'Unwrapping key' corresponds to the secret key or public key used to unwrap another key

5. 'Unwrapped key' is the plaintext key that has not been wrapped by a 'wrapping key'

6. 'Derived key' is the key obtained by a key derivation function which takes the 'master
secret key' as input

The following list of services are available in non-FIPS mode. Note that they are the same as the
FIPS mode services listed in the table above, but with the NSC_xxx tag in front of the API function,
instead of FC_xxx. The behaviors of these functions are identical to their FIPS mode counterparts.
If applicable, the non-approved algorithms used by the service is listed in the parenthesis.

• NSC_GetFunctionList (none)

• NSC_InitToken (none)

• NSC_InitPIN (none)

• NSC_Initialize (none)

• NSC_Finalize (none)

• NSC_GetInfo (none)

• NSC_GetSlotList (none)

• NSC_GetSlotInfo (none)

• NSC_GetTokenInfo (none)

• NSC_WaitForSlotEvent (none)

• NSC_GetMechanismList (none)

• NSC_GetMechanismInfo (none)

• NSC_SetPIN (none)

• NSC_OpenSession (none)

• NSC_CloseSession (none)

• NSC_CloseAllSessions (none)

• NSC_GetSessionInfo (none)

• NSC_GetOperationState (none)

• NSC_SetOperationState (none)

• NSC_Login (none)

• NSC_Logout (none)

• NSC_CreateObject (none)

• NSC_CopyObject (none)

• NSC_DestroyObject (none)

• NSC_GetObjectSize (none)

• NSC_GetAttributeValue (none)

• NSC_SetAttributeValue (none)

© 2016 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 20 of 36

Red Hat Enterprise Linux 6.6 NSS Module Version 3.14.3-22 FIPS 140-2 Security Policy

• NSC_FindObjectsInit (none)

• NSC_FindObjects (none)

• NSC_FindObjectsFinal (none)

• NSC_EncryptInit (RC2, Camellia, DES, SEED, CTS block chaining mode)

• NSC_Encrypt (RC2, Camellia, DES, SEED, CTS block chaining mode)

• NSC_EncryptUpdate (RC2, Camellia, DES, SEED, CTS block chaining mode)

• NSC_EncryptFinal (RC2, Camellia, DES, SEED, CTS block chaining mode)

• NSC_DecryptInit (RC2, Camellia, DES, SEED, CTS block chaining mode)

• NSC_Decrypt (RC2, Camellia, DES, SEED, CTS block chaining mode)

• NSC_DecryptUpdate (RC2, Camellia, DES, SEED, CTS block chaining mode)

• NSC_DecryptFinal (RC2, Camellia, DES, SEED, CTS block chaining mode)

• NSC_DigestInit (MD5, MD2)

• NSC_Digest (MD5, MD2)

• NSC_DigestUpdate (MD5, MD2)

• NSC_DigestKey (MD5, MD2)

• NSC_DigestFinal (MD5, MD2)

• NSC_SignInit (RSA and DSA with key sizes not listed in Table 3)

• NSC_Sign (RSA and DSA with key sizes not listed in Table 3)

• NSC_SignUpdate (RSA and DSA with key sizes not listed in Table 3)

• NSC_SignFinal (RSA and DSA with key sizes not listed in Table 3)

• NSC_SignRecoverInit (RSA and DSA with key sizes not listed in Table 3)

• NSC_SignRecover (RSA and DSA with key sizes not listed in Table 3)

• NSC_VerifyInit (RSA and DSA with key sizes not listed in Table 3)

• NSC_Verify (RSA and DSA with key sizes not listed in Table 3)

• NSC_VerifyUpdate (RSA and DSA with key sizes not listed in Table 3)

• NSC_VerifyFinal (RSA and DSA with key sizes not listed in Table 3)

• NSC_VerifyRecoverInit (RSA and DSA with key sizes not listed in Table 3)

• NSC_VerifyRecover (RSA and DSA with key sizes not listed in Table 3)

• NSC_DigestEncryptUpdate (RSA and DSA with key sizes not listed in Table 3)

• NSC_DecryptDigestUpdate (RSA and DSA with key sizes not listed in Table 3)

• NSC_SignEncryptUpdate (RSA and DSA with key sizes not listed in Table 3)

• NSC_DecryptVerifyUpdate (RSA and DSA with key sizes not listed in Table 3)

• NSC_GenerateKey (none)

• NSC_GenerateKeyPair (none)

• NSC_WrapKey (CAMELLIA, SEED, DES, RC4, RC2, RSA Key wrapping with key size
smaller than 2048 bits)

© 2016 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 21 of 36

Red Hat Enterprise Linux 6.6 NSS Module Version 3.14.3-22 FIPS 140-2 Security Policy

• NSC_UnwrapKey (CAMELLIA, SEED, DES, RC4, RC2, RSA Key wrapping with key size
smaller than 2048 bits)

• NSC_DeriveKey (none)

• NSC_SeedRandom (none)

• NSC_GenerateRandom (none)

• NSC_GetFunctionStatus (none)

• NSC_CancelFunction (none)

© 2016 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 22 of 36

Red Hat Enterprise Linux 6.6 NSS Module Version 3.14.3-22 FIPS 140-2 Security Policy

4. Physical Security
The Module comprises of software only and thus does not claim any physical security.

© 2016 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 23 of 36

Red Hat Enterprise Linux 6.6 NSS Module Version 3.14.3-22 FIPS 140-2 Security Policy

5. Operational Environment
This Module operates in a modifiable Operational Environment per the FIPS 140-2 definition.

The underlying operating system of Red Hat Enterprise Linux 6 is evaluated according to Common
Criteria at EAL4 – certification IDs of BSI-DSZ-CC-0924 as well as BSI-DSZ-CC-0754 claiming
compliance to the OSPP.

5.1. Policy

The operating system is restricted to a single operator mode of operation (i.e., concurrent
operators are explicitly excluded).

The application that makes calls to the Module is the single user of the Module, even when the
application is serving multiple clients.

In FIPS approved mode, the ptrace(2) system call, the debugger (gdb(1)), and strace(1) shall not
be used. In addition, other tracing mechanisms offered by the Linux environment, such as ftrace or
systemtap, shall not be used.

© 2016 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 24 of 36

https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/Betriebssysteme/0754.html
https://www.bsi.bund.de/SharedDocs/Zertifikate_CC/CC/Betriebssysteme/0924.html

Red Hat Enterprise Linux 6.6 NSS Module Version 3.14.3-22 FIPS 140-2 Security Policy

6. Cryptographic Key Management
The application that uses the Module is responsible for appropriate destruction and zeroization of
the key material. The library provides functions for key allocation and destruction, which
overwrites the memory that is occupied by the key information with “zeros” before it is
deallocated.

The following table provides a summary of the Keys/CSPs in the module:

Keys/CSPs Keys/CSPs
length

Key
Generation

Key Storage Key
Entry/Output

Key
Zeroization

AES Keys 128, 192 or
256 bits

Use of the
module's DRBG

Application
memory or
key database

Encrypted
through key
wrapping using
FC_WrapKey

Automatic
zeroized when
freeing the
cipher handle

Triple-DES
Keys

168 bits Use of the
module's DRBG

Application
memory or
key database

Encrypted
through key
wrapping using
FC_WrapKey

Automatic
zeroized when
freeing the
cipher handle

DSA private
keys

2048 and
3072 bits

Use of the
module's DRBG
and the modules
DSA key
generation
mechanism

Application
memory or
key database

Encrypted
through key
wrapping using
FC_WrapKey

Automatic
zeroized when
freeing the
cipher handle

RSA private
keys

2048 and
3072 bits

Use of the
module's DRBG
and the modules
RSA key
generation
mechanism

Application
memory or
key database

Encrypted
through key
wrapping using
FC_WrapKey

Automatic
zeroized when
freeing the
cipher handle

ECDSA
private keys

EC key
lengths
according to
NIST curves
P-256, P-384
and P-521

Use of the
module's DRBG
and the modules
ECDSA key
generation
mechanism

Application
memory or
key database

Encrypted
through key
wrapping using
FC_WrapKey

Automatic
zeroized when
freeing the
cipher handle

DRBG
Entropy string

 880 bits
(twice the
required size
of at least
440 bits
defined in
SP800-90A)

The seed data
obtained from
hardware
random number
generator
/dev/urandom

Application
memory

N/A Automatic
zeroized when
freeing DRBG
handle

DRBG C, V
values

880 bits Based on
entropy string as
defined in
SP800-90A

Application
memory

N/A Automatic
zeroized when
freeing DRBG
handle

© 2016 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 25 of 36

Red Hat Enterprise Linux 6.6 NSS Module Version 3.14.3-22 FIPS 140-2 Security Policy

HMAC Keys At least 112
bits

Use of the
module's DRBG

Application
memory or
key data
base

Encrypted
through key
wrapping using
FC_WrapKey

Automatic
zeroized when
freeing the
cipher handle

TLS pre-
master secret

Pre-master
secret length
according to
TLS v1.0, 1.1
and 1.2

Use of the
module's DRBG
together with
Diffie-
Hellman/EC
Diffie-Hellman

Application
memory

N/A Automatic
zeroized when
freeing the
cipher handle

TLS master
secret

As required
by TLS
ciphersuite

Use of the TLS
pre-master
secret and PRF

Application
memory

N/A Automatic
zeroized when
freeing the
cipher handle

User
Passwords

N/A Input through
keyboard by the
Crypto Officer
when initiating
the module

Stored in
salted form in
the key
database

Input through
keyboard by the
User for
authentication

Zeroized when
the module is
re-initialized or
overwritten
when the user
changes its
password

Table 8: Keys/CSPs

6.1. Random Number Generation

The cryptographic module performs pseudorandom number generation using NIST SP 800-90 Hash
Deterministic Random Bit Generator using SHA-256. The cryptographic module initializes its
pseudorandom number generator by obtaining 880 bits of random data from the operating
system via /dev/urandom. The seed length is determined by the underlying SHA algorithms based
on the requirement listed in section 10.1 of SP 800-90A. The entropy source /dev/urandom
provides at least 110 bytes of random data available to the cryptographic module to obtain.

Reseeding is performed by pulling more data from /dev/urandom. The module provides at least
112 bits of entropy.

A product using the cryptographic module should periodically reseed the module's pseudorandom
number generator with unpredictable noise by calling FC_SeedRandom. After 2⁴⁸ calls to the
random number generator the cryptographic module obtains another 110 bytes of random data
from the operating system via /dev/urandom.

The module generates keys whose strengths are modified by available entropy.

6.2. Key/CSP Access And Storage

This section identifies the cryptographic keys and CSPs that the user has access to while
performing a service, and the type of access the user has to the CSPs.

The NSS cryptographic module employs the cryptographic keys and CSPs in the FIPS Approved
mode of operation listed in the aforementioned table. Note that the private key database
(provided with the files key3.db/key4.db) mentioned above is outside the cryptographic boundary.

Note: The NSS cryptographic module does not implement the TLS protocol. The NSS cryptographic

© 2016 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 26 of 36

Red Hat Enterprise Linux 6.6 NSS Module Version 3.14.3-22 FIPS 140-2 Security Policy

module implements the cryptographic operations, including TLS-specific key generation and
derivation operations, that can be used to implement the TLS protocol.

Public and private keys are provided to the Module by the calling process, and are destroyed when
released by the appropriate API function calls.

6.3. Key/CSP Zeroization

The cryptographic module performs explicit zeroization steps to clear the memory region
previously occupied by a plaintext secret key, private key, or password. A plaintext secret or
private key gets zeroized when it is passed to a FC_DestroyObject call. All plaintext secret and
private keys must be zeroized when the NSS cryptographic module: is shut down (with a
FC_Finalize call); or when reinitialized (with a FC_InitToken call); or when the state changes
between the FIPS Approved mode and non-FIPS Approved mode (with a NSC_Finalize /
FC_Initialize or FC_Finalize / NSC_Initialize sequence). All zeroization is to be performed
by storing the value 0 into every byte of the memory region previously occupied by a plaintext
secret key, private key, or password.

© 2016 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 27 of 36

Red Hat Enterprise Linux 6.6 NSS Module Version 3.14.3-22 FIPS 140-2 Security Policy

7. Electromagnetic Interference/Electromagnetic
Compatibility (EMI/EMC)
Product Name and Model: HP ProLiant DL380p Gen8

Regulatory Model Number: HSTNS-5163

Product Options: All

EMC: Class A

Product Name and Model: IBM System x3500 M4

Regulatory Model Number: 7383-AC1

Product Options: All

EMC: Class A

© 2016 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 28 of 36

Red Hat Enterprise Linux 6.6 NSS Module Version 3.14.3-22 FIPS 140-2 Security Policy

8. Self-Tests
FIPS 140-2 requires that the Module perform self-tests to ensure the integrity of the Module and
the correctness of the cryptographic functionality at start up. In addition, some functions require
continuous verification of function, such as the Random Number Generator. All of these tests are
listed and described in this section.

The Module performs both power-up self-tests (at module initialization) and continuous condition
tests (during operation). No operator intervention is required during the running of the self-tests.
Input, output, and cryptographic functions cannot be performed while the Module is in a self-test
or error state because the Module is globally in self-test mode, and will not return to the calling
application until the power-up self-tests are completed successfully. If any self-tests fail, the
Module enters the error state and subsequent calls to the Module will also fail - thus no further
cryptographic operations are possible. The Module returns the error code CKR_DEVICE_ERROR to
the calling application to indicate the error state.

The power-up self tests can be performed on demand by re-initializing the Module.

See section 9.3 for descriptions of possible self-test errors and recovery procedures.

8.1. Power-Up Tests

The following table provides the lists of Known-Answer Test (KAT) and Integrity Test as the power-
up self-tests:

Algorithm Test

AES KAT: encryption and decryption are tested separately

Triple-DES KAT: encryption and decryption are tested separately

DSA KAT: signature generation and verification are tested
separately

RSA KAT: encryption and decryption are tested separately
KAT: signature generation and verification are tested
separately

ECDSA KAT: signature generation and verification are tested
separately

SP 800-90A Hash DRBG KAT

HMAC-SHA-1, -244, -256, -384, -512 KAT

SHA-1, -224, -256, -384, -512 KAT

Module integrity DSA 2048 bits signature verification with SHA-256

Table 9: Module Self-Tests

8.2. Conditional Tests

The following table provides the lists of Pairwise Consistency Test (PCT) and Continuous Random
Number Generation Test (CRNGT) as the conditional self-tests:

© 2016 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 29 of 36

Red Hat Enterprise Linux 6.6 NSS Module Version 3.14.3-22 FIPS 140-2 Security Policy

Algorithm Test

DSA PCT: signature generation and verification are tested
separately

ECDSA PCT: signature generation and verification are tested
separately

RSA PCT: signature generation and verification are tested
separately, encryption and decryption are tested
separately

DRBG SP800-90A CRNGT

Table 10: Module Conditional Tests

© 2016 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 30 of 36

Red Hat Enterprise Linux 6.6 NSS Module Version 3.14.3-22 FIPS 140-2 Security Policy

9. Guidance

9.1. Crypto Officer Guidance

The version of the RPMs containing the FIPS validated Module is stated in section 1.1. The RPM
packages forming the Module can be installed by standard tools recommended for the installation
of RPM packages on a Red Hat Enterprise Linux system (for example, yum, rpm, and the RHN
remote management tool). All RPM packages are signed with the Red Hat build key, which is an
RSA 2048 bit key using SHA-256 signatures. The signature is automatically verified upon
installation of the RPM package. If the signature cannot be validated, the RPM tool rejects the
installation of the package. In such a case, the crypto officer is requested to obtain a new copy of
the module RPMs from Red Hat.

In addition, to support the Module, the NSPR library must be installed that is offered by the
underlying operating system.

Only the cipher types listed in section 1.2 are allowed to be used.

To bring the Module into FIPS approved mode, perform the following:

1. Install the dracut-fips package:
yum install dracut-fips

2. Recreate the INITRAMFS image:
dracut -f

After regenerating the initramfs, the Crypto Officer has to append the following string to the kernel
command line by changing the setting in the boot loader:

fips=1

If /boot or /boot/efi resides on a separate partition, the kernel parameter boot=<partition of /boot
or /boot/efi> must be supplied. The partition can be identified with the command

"df /boot"

or
"df /boot/efi"

respectively. For example:
$ df /boot
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/sda1 233191 30454 190296 14% /boot

The partition of /boot is located on /dev/sda1 in this example. Therefore, the following string needs
to be appended to the kernel command line:

"boot=/dev/sda1"

Reboot to apply these settings.

If an application that uses the Module for its cryptography is put into a chroot environment, the
Crypto Officer must ensure one of the above methods is available to the Module from within the
chroot environment to ensure entry into FIPS approved mode. Failure to do so will not allow the
application to properly enter FIPS approved mode.

The version of the RPM containing the validated Module is the version listed in chapter 1. The
integrity of the RPM is automatically verified during the installation of the Module and the Crypto
Officer shall not install the RPM file if the RPM tool indicates an integrity error.

© 2016 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 31 of 36

Red Hat Enterprise Linux 6.6 NSS Module Version 3.14.3-22 FIPS 140-2 Security Policy

9.1.1. Access to Audit Data

The Module may use the Unix syslog function and the audit mechanism provided by the operating
system to audit events. Auditing is turned off by default. Auditing capability must be turned on as
part of the initialization procedures by setting the environment variable NSS_ENABLE_AUDIT to 1.
The Crypto-Officer must also configure the operating system's audit mechanism.

The Module uses the syslog function to audit events, so the audit data are stored in the system
log. Only the root user can modify the system log. On some platforms, only the root user can read
the system log; on other platforms, all users can read the system log. The system log is usually
under the /var/log directory. The exact location of the system log is specified in the /etc/syslog.conf
file. The Module uses the default user facility and the info, warning, and err severity levels for its
log messages.

The NSS cryptographic module can also be configured to use the audit mechanism provided by the
operating system to audit events. The audit data would then be stored in the system audit log.
Only the root user can read or modify the system audit log. To turn on this capability it is
necessary to create a symbolic link from the library file /usr/lib/libaudit.so.0 to
/usr/lib/libaudit.so.1.0.0 (on 32-bit platforms) and /usr/lib64/libaudit.so.0 to
/usr/lib64/libaudit.so.1.0.0 (on 64-bit platforms).

9.2. User Guidance

The Module must be operated in FIPS approved mode to ensure that FIPS 140-2 validated
cryptographic algorithms and security functions are used.

The following module initialization steps must be followed by the Crypto-Officer before starting to
use the NSS module:

• Set the environment variable NSS_ENABLE_AUDIT to 1 before using the NSS module with an
application.

• Use the application to get the function pointer list using the NSS API
“FC_GetFunctionList”.

• Use the API FC_Initialize to initialize the module. Using the FC_GetFunctionList above
ensured that we selected FIPS mode, and the subsequent FC_Initialize call then initializes
the module in FIPS-mode. Ensure that this returns CKR_OK. A return code other than
CKR_OK will mean the FIPS-mode was not enabled, and in that case, the module must be
reset and initialized again.

• For the first login, provide a NULL password and login using the function pointer C_Login,
which will in-turn call FC_Login API of the module. This is required to set the initial NSS
User password.

• Now, set the initial NSS User role password using the function pointer C_InitPIN. This will
call the module's API FC_InitPIN API. Then, logout using the function pointer C_Logout,
which will call the module's API FC_Logout.

• The NSS User role can now be assumed on the module by logging in using the User
password. And the Crypto-Officer role can be implicitly assumed by performing the Crypto-
Officer services as listed in Section “Specification of Services” of this document.

NSS cryptographic module can be configured to use different private key database formats:
key3.db or key4.db. “key3.db” format is based on the Berkeley DataBase engine and should not be
used by more than one process concurrently. “key4.db” format is based on SQL DataBase engine
and can be used concurrently by multiple processes. Both databases are considered outside the

© 2016 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 32 of 36

Red Hat Enterprise Linux 6.6 NSS Module Version 3.14.3-22 FIPS 140-2 Security Policy

cryptographic boundary and all data stored in these databases is considered stored in plaintext.
The interface code of the NSS cryptographic module that accesses data stored in the database is
considered part of the cryptographic boundary.

Secret and private keys, plaintext passwords, and other security-relevant data items are
maintained under the control of the cryptographic module. Secret and private keys must be
passed to the calling application only in encrypted (wrapped) form with FC_WrapKey and entered
from calling application only in encrypted (wrapped) form with FC_UnwrapKey. The cryptographic
algorithms allowed for this purpose in FIPS-mode are AES, Triple-DES, RSA using the corresponding
Approved modes and key sizes. Note: If the secret and private keys passed to higher-level callers
are encrypted using a symmetric key algorithm, the encryption key may be derived from a
password. In such a case, they should be considered to be in plaintext form in the FIPS Approved
mode.

Automated key transport methods must use FC_WrapKey and FC_UnwrapKey to input or output
secret and private keys to or from the module.

All cryptographic keys used in the FIPS Approved mode of operation must be generated in the FIPS
Approved mode or imported while running in the FIPS Approved mode.

9.2.1. AES GCM Guidance

The AES GCM IV generation is compliant with IETF RFC 5288. The GCM block chaining mode shall
only be used together with the TLS protocol. This protocol ensures that the encryption operation is
invoked with updated IVs for each processed data packet.

The API for GCM encryption restricts the size of the processed data packet to 2³² bytes. Combining
that with the requirement to use the GCM cipher with TLS only automatically implies that never
more than 2²⁸ AES blocks are encrypted with the same key and IV combination.

9.2.2. RSA and DSA Keys

The Module allows the use of 1024 bit RSA and DSA keys for legacy purposes, including signature
generation.

As per SP800-131A, RSA and DSA must be used with either 2048 bit keys or 3072 bit keys. To
comply with the requirements of FIPS 140-2, a user must therefore only use keys with 2048 bits or
3072 bits.

9.3. Handling Self-Test Errors

In the FIPS Approved mode of operation the cryptographic module does not allow critical errors to
compromise security. Whenever a critical error (e.g., a self-test failure) is encountered, the
cryptographic module enters an error state and the library needs to be reinitialized to resume
normal operation. Reinitialization is accomplished by calling FC_Finalize followed by FC_Initialize.

© 2016 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 33 of 36

Red Hat Enterprise Linux 6.6 NSS Module Version 3.14.3-22 FIPS 140-2 Security Policy

10. Mitigation of Other Attacks
The Module is designed to mitigate the following attacks.

Attack Mitigation Mechanism Specific Limit

Timing attacks on RSA RSA blinding
Timing attack on RSA was first
demonstrated by Paul Kocher in
1996 [16], who contributed the
mitigation code to our module.
Most recently Boneh and Brumley
[17] showed that RSA blinding is
an effective defense against
timing attacks on RSA.

None

Cache-timing attacks on
the modular
exponentiation operation
used in RSA and DSA

Cache invariant modular
exponentiation
This is a variant of a modular
exponentiation implementation
that Colin Percival [18] showed to
defend against cache-timing
attacks

This mechanism requires intimate
knowledge of the cache line sizes
of the processor. The mechanism
may be ineffective when the
module is running on a processor
whose cache line sizes are
unknown.

Arithmetic errors in RSA
signatures

Double-checking RSA
signatures
Arithmetic errors in RSA
signatures might leak the private
key. Ferguson and Schneier [19]
recommend that every RSA
signature generation should verify
the signature just generated.

None

© 2016 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 34 of 36

Red Hat Enterprise Linux 6.6 NSS Module Version 3.14.3-22 FIPS 140-2 Security Policy

11. Glossary and Abbreviations
AES Advanced Encryption Specification

CAVP Cryptographic Algorithm Validation Program

CBC Cypher Block Chaining

CCM Counter with Cipher Block Chaining-Message
Authentication Code

CFB Cypher Feedback

CMT Cryptographic Module Testing

CMVP Cryptographic Module Validation Program

CSP Critical Security Parameter

CVT Component Verification Testing

DES Data Encryption Standard

DSA Digital Signature Algorithm

ECB Electronic Code Book

FSM Finite State Model

HMAC Hash Message Authentication Code

MAC Message Authentication Code

NIST National Institute of Science and Technology

NVLAP National Voluntary Laboratory Accreditation Program

OFB Output Feedback

O/S Operating System

PRNG Pseudo Random Number Generator

RNG Random Number Generator

RSA Rivest, Shamir, Addleman

SDK Software Development Kit

SHA Secure Hash Algorithm

SHS Secure Hash Standard

SLA Service Level Agreement

SOF Strength of Function

SSH Secure Shell

TDES Triple DES

UI User Interface

© 2016 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 35 of 36

Red Hat Enterprise Linux 6.6 NSS Module Version 3.14.3-22 FIPS 140-2 Security Policy

12. References
[1] OpenSSL man pages where crypto(3) provides the introduction and link to all OpenSSL APIs
regarding the cryptographic operation and ssl(3) to all OpenSSL APIs regarding the SSL/TLS
protocol family

[2] FIPS 140-2 Standard, http://csrc.nist.gov/groups/STM/cmvp/standards.html

[3] FIPS 140-2 Implementation Guidance, http://csrc.nist.gov/groups/STM/cmvp/standards.html

[4] FIPS 140-2 Derived Test Requirements,http://csrc.nist.gov/groups/STM/cmvp/standards.html

[5] FIPS 197 Advanced Encryption Standard, http://csrc.nist.gov/publications/PubsFIPS.html

[6] FIPS 180-4 Secure Hash Standard, http://csrc.nist.gov/publications/PubsFIPS.html

[7] FIPS 198-1 The Keyed-Hash Message Authentication Code (HMAC),
http://csrc.nist.gov/publications/PubsFIPS.html

[8] FIPS 186-4 Digital Signature Standard (DSS), http://csrc.nist.gov/publications/PubsFIPS.html

[9] ANSI X9.52:1998 Triple Data Encryption Algorithm Modes of Operation,
http://webstore.ansi.org/FindStandards.aspx?
Action=displaydept&DeptID=80&Acro=X9&DpName=X9,%20Inc.

[10] NIST SP 800-67 Revision 1, Recommendation for the Triple Data Encryption Algorithm (TDEA)
Block Cipher, http://csrc.nist.gov/publications/PubsFIPS.html

[9] NIST SP 800-38B, Recommendation for Block Cipher Modes of Operation: The CMAC Mode for
Authentication, http://csrc.nist.gov/publications/PubsFIPS.html

[10] NIST SP 800-38C, Recommendation for Block Cipher Modes of Operation: The CCM Mode for
Authentication and Confidentiality, http://csrc.nist.gov/publications/PubsFIPS.html

[11] NIST SP 800-38D, Recommendation for Block Cipher Modes of Operation: Galois/Counter
Mode (GCM) and GMAC, http://csrc.nist.gov/publications/PubsFIPS.html

[12] NIST SP 800-38E, Recommendation for Block Cipher Modes of Operation: The XTS-AES Mode
for Confidentiality on Storage Devices, http://csrc.nist.gov/publications/PubsFIPS.html

[13] NIST SP 800-56A, Recommendation for Pair-Wise Key Establishment Schemes using Discrete
Logarithm Cryptography (Revised), http://csrc.nist.gov/publications/PubsFIPS.html

[14] NIST SP 800-90A, Recommendation for Random Number Generation Using Deterministic
Random Bit Generators, http://csrc.nist.gov/publications/PubsFIPS.html

[15] RSA Laboratories, “PKCS #11 v2.20: Cryptographic Token Interface Standard”, 2004.
(http://www.rsasecurity.com/rsalabs/node.asp?id=2133)

[16] P. Kocher, "Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other
Systems," CRYPTO '96, Lecture Notes In Computer Science, Vol. 1109, pp. 104-113, Springer-
Verlag, 1996. (http://www.cryptography.com/timingattack/)

[17] D. Boneh and D. Brumley, "Remote Timing Attacks are Practical,"
http://crypto.stanford.edu/~dabo/abstracts/ssl-timing.html.

[18] C. Percival, "Cache Missing for Fun and Profit," http://www.daemonology.net/papers/htt.pdf.

[19] N. Ferguson and B. Schneier, Practical Cryptography, Sec. 16.1.4 "Checking RSA Signatures",
p. 286, Wiley Publishing, Inc., 2003.

© 2016 Red Hat/atsec information security. This document can be reproduced and distributed only whole and
intact, including this copyright notice. 36 of 36

http://csrc.nist.gov/publications/PubsFIPS.html
http://csrc.nist.gov/publications/PubsFIPS.html
http://csrc.nist.gov/publications/PubsFIPS.html
http://csrc.nist.gov/publications/PubsFIPS.html
http://csrc.nist.gov/publications/PubsFIPS.html
http://csrc.nist.gov/publications/PubsFIPS.html
http://csrc.nist.gov/publications/PubsFIPS.html
http://webstore.ansi.org/FindStandards.aspx?Action=displaydept&DeptID=80&Acro=X9&DpName=X9,%20Inc.
http://webstore.ansi.org/FindStandards.aspx?Action=displaydept&DeptID=80&Acro=X9&DpName=X9,%20Inc.
http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.52%3A1998
http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.52%3A1998
http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.52%3A1998
http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9.52%3A1998
http://csrc.nist.gov/publications/PubsFIPS.html
http://csrc.nist.gov/publications/PubsFIPS.html
http://csrc.nist.gov/publications/PubsFIPS.html
http://csrc.nist.gov/publications/PubsFIPS.html
http://csrc.nist.gov/groups/STM/cmvp/standards.html
http://csrc.nist.gov/groups/STM/cmvp/standards.html
http://csrc.nist.gov/groups/STM/cmvp/standards.html

	1.1. Description of the Module
	1.2. Description of the Approved Modes
	1.3. Cryptographic Boundary
	1.3.1. Hardware Block Diagram
	1.3.2. Software Block Diagram

	2.1. PKCS #11
	2.2. Inhibition of Data Output
	2.3. Disconnecting the Output Data Path from the Key Processes
	3.1. Roles
	3.2. Role Assumption
	3.3. Strength of Authentication Mechanism
	3.4. Multiple Concurrent Operators
	3.5. Services
	3.5.1. Calling Convention of API Functions
	3.5.2. API Functions

	5.1. Policy
	6.1. Random Number Generation
	6.2. Key/CSP Access And Storage
	6.3. Key/CSP Zeroization
	8.1. Power-Up Tests
	8.2. Conditional Tests
	9.1. Crypto Officer Guidance
	9.1.1. Access to Audit Data

	9.2. User Guidance
	9.2.1. AES GCM Guidance
	9.2.2. RSA and DSA Keys

	9.3. Handling Self-Test Errors

