FIPS 140-2 Security Policy for:

Huawei Device (Dongguan) Co. Ltd. EDK Management Module

Version 1.6

Table of Contents

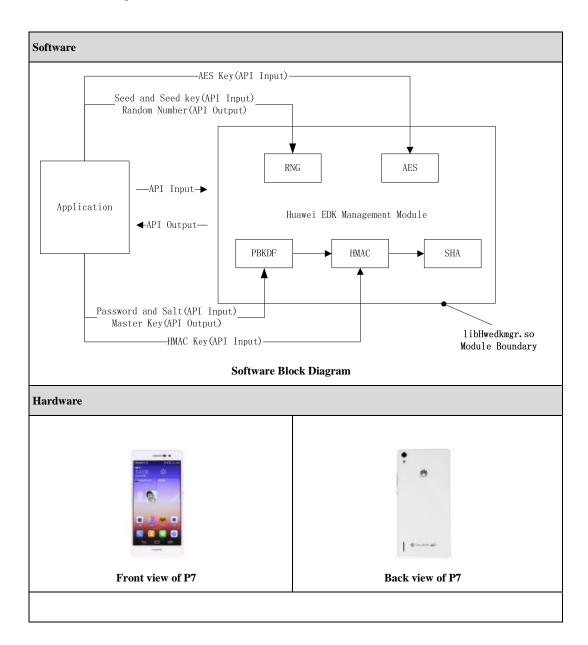
FIP	S 140-2 Security Policy for:
1	Overview
1.1	Purpose of the Security Policy
1.2	Target Audience
2	Module Specification
3	Ports and Interfaces
4	Roles Services and Authentication
5	Physical Security
6	Operational Environment
7	Key Management
8	EMI/EMC14
9	Self Tests
10	Design Assurance
11	Mitigation of Other Attacks

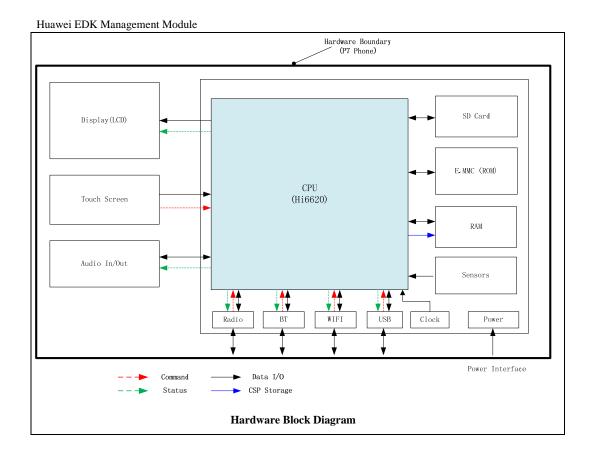
1 Overview

This document is a non-proprietary FIPS 140-2 Security Policy for the Huawei EDK Management Module v1.0 cryptographic module. It contains a specification of the rules under which the module must operate and describes how this module meets the requirements as specified in FIPS PUB 140-2 (Federal Information Processing Standards Publication 140-2) for a Security Level 1 multi-chip standalone software module.

- 1.1 Purpose of the Security Policy
 - it is required for FIPS 140-2 validation
 - it allows individuals and organizations to determine whether the cryptographic module, as implemented, satisfies the stated security policy
 - it describes the capabilities, protection, and access rights provided by the cryptographic module, allowing individuals and organizations to determine whether it will meet their security requirements

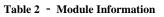
1.2 Target Audience


This document is intended to be part of the package of documents that are submitted for FIPS 140-2 validation. It is intended for the following people:


- Developers working on the release
- FIPS 140-2 testing lab
- Crypto Module Validation Program (CMVP)
- Consumers

Section	Level
1. Cryptographic Module Specification	1
2. Cryptographic Module Ports and Interfaces	1
3. Roles, Services, and Authentication	1
4. Finite State Model	1
5. Physical Security	N/A
6. Operational Environment	1
7. Cryptographic Key Management	1
8. EMI/EMC	1
9. Self-Tests	1
10. Design Assurance	1
11. Mitigation of Other Attacks	N/A
Overall Level	1

The following table shows the overview of the security level for each section.


Table 1 - Security Level Detail

The module has been tested on the following platforms.

	Module Name	Hardware Version	Firmware Version	Software Version		OE
1	Huawei EDK Management Module	SOPHIA_ULG_VD		P7-L00V100R001C17B210	Emotion UI 2.3	Android 4.4.2

2 Module Specification

The EDK management module has only FIPS 140-2 approved mode.

In approved mode the EDK management module will support the following approved functions:

- ✓ AES Certificate #2967 and #3178 (128/192/256 ECB, CBC, OFB, CFB 1, CFB 8, CFB 128, CTR, XTS, CCM, GCM)
- ✓ SHS Certificate #2495 (SHA-1, SHA-224, SHA-256, SHA-384, SHA-512)
- ✓ HMAC Certificate #1881 (SHA-1, SHA-224, SHA-256, SHA-384, SHA-512)

- ✓ RNG Certificate #1299 (ANSI X9.31)
- ✓ Password-Based Key Derivation Function (PBKDF) Vendor Affirmed (NIST 800-132)

User Guide

The FIPS mode initialization is performed when the application invokes the FIPS_module_mode_set() call. Prior to this invocation the Module is uninitialized with the internal global flag 'fips_mode' set to FALSE indicating non-FIPS mode by default.

The FIPS_module_mode_set () function verifies the integrity of the runtime executable using a HMAC-SHA-1 digest computed at build time. If this computed HMAC-SHA-1 digest matches the stored known digest then the power-up self-test, consisting of the algorithm specific Known Answer tests, is performed. If any component of the power-up self-test fails the internal global error flag 'fips_selftest_fail' is set to prevent subsequent invocation of any cryptographic function calls. If all components of the power-up self-test are successful then FIPS_module_mode_set () sets the 'fips_mode' flag to TRUE and the module is in FIPS mode. And in the FIPS operational mode, if the conditional test of RNG failed, it will go to Error state, and in all other cases, it will go to power off state directly.

3 Ports and Interfaces

FIPS Interface	Ports
Data Input	API input parameters
Data Output	API output parameters
Control Input	API function calls
Status Output	API return codes;
Power Input	Physical power connector

Table 3 - Ports and Interfaces

When the Module is performing self-tests or is in an error state, all output on the logical data output interface is inhibited. As a software module, it cannot control the physical ports.

4 Roles Services and Authentication

The module does not provide identification or authentication mechanisms that would distinguish between the two supported roles. These roles are implicitly assumed by the services that are accessed, and can be differentiated by assigning module installation and configuration services to the Crypto Officer.

Role	Type of Auth	Authentication	Auth Strength	Mult Attempt Str
Crypto Officer	N/A	N/A	N/A	N/A
User	N/A	N/A	N/A	N/A

The services provided by the Module are listed in the following table.

	Service	Modes	Role	Keys & CSPs	Alg Cert	RWE	API Functions
1	AES encryption/ decryption	ЕСВ, СВС, СFВ1, СFВ8, СFВ128, ОFВ, СTR, XTS, GCM, ССМ	User	128-bits key 192-bits key 256-bits key	#2967 #3178	R,W,E	FIPS_cipherinitFIPS_cipherFIPS_cipher_ctx_newFIPS_cipher_ctx_ctrlFIPS_cipher_ctx_copyFIPS_cipher_ctx_set_key_lengthFIPS_cipher_ctx_freeFIPS_cipher_ctx_cleanupCRYPTO_ccm128_tagCRYPTO_ccm128_setivCRYPTO_ccm128_encrypt_ccm64CRYPTO_ccm128_decryptccm64CRYPTO_ccm128_decryptccm64CRYPTO_ccm128_decryptccm64CRYPTO_ccm128_decryptAES_set_encrypt_keyCRYPTO_ccm128_initAES_encryptAES_set_decrypt_keyAES_set_decryptAES_decrypt

Page8, Total16

 	ement Module	 		
				CRYPTO_gcm128_setiv
				CRYPTO_gcm128_aad
				CRYPTO_gcm128_encrypt_
				ctr32
				CRYPTO_gcm128_tag
				CRYPTO_gcm128_encrypt
				CRYPTO_gcm128_decrypt_
				ctr32
				CRYPTO_gcm128_decrypt
				CRYPTO_gcm128_finish
				CRYPTO_gcm128_init
				CRYPTO_ctr128_encrypt_ct
				r32
				CRYPTO_ctr128_encrypt
				CRYPTO_cfb128_8_encrypt
				CRYPTO_cfb128_1_encrypt
				CRYPTO_cfb128_encrypt
				CRYPTO_ofb128_encrypt
				CRYPTO_cbc128_encrypt
				AES_cbc_encrypt
				EVP_aes_128_cbc
				EVP_aes_128_ecb
				EVP_aes_128_ofb
				EVP_aes_128_cfb128
				EVP_aes_128_cfb1
				EVP_aes_128_cfb8
				EVP_aes_128_ctr
				EVP_aes_192_cbc
				EVP_aes_192_ecb
				EVP_aes_192_ofb
				EVP_aes_192_cfb128
				EVP_aes_192_cfb1
				EVP_aes_192_cfb8
				EVP_aes_192_ctr
				EVP_aes_256_cbc
				EVP_aes_256_ecb
				EVP_aes_256_ofb
				EVP_aes_256_cfb128
				EVP_aes_256_cfb1
				EVP_aes_256_cfb8
				EVP_aes_256_ctr
				EVP_aes_128_gcm
				EVP_aes_192_gcm
				EVP_aes_256_gcm

Tua	wei EDK Manage						
							EVP_aes_128_xts
							EVP_aes_256_xts
							EVP_aes_128_ccm
							EVP_aes_192_ccm
							EVP_aes_256_ccm
							CRYPTO_cbc128_decrypt
							CRYPTO_gcm128_new
							CRYPTO_gcm128_release
							FIPS_get_cipherbynid
							FIPS_digest
							FIPS_digestinit
							FIPS_digestupdate
							FIPS_digestfinal
							FIPS_md_ctx_init
							FIPS_md_ctx_create
							FIPS_md_ctx_copy
							FIPS_md_ctx_destroy
							FIPS_md_ctx_cleanup
							SHA512_Final
							SHA512_Update
							SHA512_Init
							SHA384_Init
							SHA256_Final
	SHA-1						SHA256_Update
	SHA-224						SHA256_Init
2	SHA-256	N/A	User	N/A	#2495	R,W,E	SHA224_Init
2	SHA-384	19/24	0.301	1.7.1	112495	K, W,L	SHA1_Final
	SHA-512						SHA1_Update
	511A-512						SHA1_Init
							EVP_sha1
							EVP_sha224
							EVP_sha256
							EVP_sha384
							EVP_sha512
							SHA224_Update
							SHA224_Final
							SHA256
							SHA224
							SHA384_Final
							SHA384_Update
							SHA384
							SHA512
							FIPS_md_ctx_destroy
3	HMAC-SHA-1	N/A	User	HMAC Key	#1881	R,W,E	FIPS_hmac FIPS_hmac_init

Page10, Total16

Tiuz	iwei EDK Manag		1	1	1		
	HMAC-SHA-224						FIPS_hmac_init_ex
	HMAC-SHA-256						FIPS_hmac_update
	HMAC-SHA-384						FIPS_hmac_ctx_copy
	HMAC-SHA-512						FIPS_hmac_ctx_init
							FIPS_hmac_ctx_set_flags
							FIPS_hmac_final
							FIPS_hmac_ctx_cleanup
							FIPS_get_digestbynid
							FIPS_x931_bytes
							FIPS_x931_reset
							FIPS_x931_seed
							FIPS_x931_set_dt
		AES-128		Seed and			FIPS_x931_set_key
4	RNG	AES-192	User	Seed Key	#1299	R,W,E	FIPS_x931_status
		AES-256					FIPS_x931_test_mode
							FIPS_x931_stick
							FIPS_get_timevec
							FIPS_x931_method
		HMAC-SHA-1					TH 5_x)31_method
		HMAC-SHA-224					PKCS5_PBKDF2_HMAC
5	PBKDF	HMAC-SHA-256 HMAC-SHA-384		Password and Salt	PKCS#5	R,W,E	rkcs5_rbkbr2_llmAc
5			User				
		HMAC-SHA-584					
		пмас-эпа-э12	Create				FIPS_module_mode_set
6	Initialization	N/A	Crypto Officer	N/A	N/A	Е	FIFS_module_mode_set
							FIPS_module_mode
		et Status N/A	Crypto Officer		N/A	R,E	FIPS_selftest_failed
7	Get Status			N/A			FIPS_module_version
							FIPS_module_version_text
							FIPS_selftest
							fips_set_selftest_fail
							FIPS_selftest_sha1
							FIPS_selftest_hmac
							FIPS_selftest_aes
8	Self Test	N/A	Crypto	N/A	N/A	Е	FIPS_selftest_aes_ccm
0	Sell Test	N/A	Officer	IN/A	IN/A	Е	
							FIPS_selftest_aes_gcm
							FIPS_selftest_aes_xts
							FIPS_selftest_x931
							fips_pkey_signature_test
							fips_cipher_test
							FIPS_text_start
9	Integrity Validation	N/A	Crypto Officer	N/A	N/A	Е	FIPS_rodata_start
ľ							FIPS_incore_fingerprint
							FIPS_text_end

Page11, Total16

							FIPS_rodata_end FIPS_check_incore_fingerpri nt
10	Post	N/A	User	N/A	N/A	Е	fips_post_started fips_post_success fips_post_failed FIPS_post_set_callback fips_post_cb fips_post_begin fips_post_end fips_post_end fips_post_status
11	Exception	N/A	User	N/A	N/A	Е	FIPS_die

Table 5 – FIPS Approved services

- 1. The AES algorithm provides encryption and decryption services with key size of 128,192 and 256 bits, and modes of ECB,CBC,CFB1,CFB8, CFB128, OFB,CTR, XTS,GCM,CCM;
- The SHA algorithm provides the cryptographic hash functions to produce a message digest. The module provides SHA 1, SHA 224, SHA 256, SHA 384 and SHA 512.
- The HMAC algorithm provides the functions to calculate a message authentication code involving a cryptographic hash function, which can be SHA 1, SHA 224, SHA 256, SHA 384 and SHA 512.
- 4. The RNG algorithm validated for use with the module allows for the generation of AES128, 192, and 256 bit keys.
- 5. The PBKDF2 algorithm provides password-based encryption functionality based on PKCS#5, with a SHA-based HMAC.

5 Physical Security

Huawei EDK Management Module is comprised of software only. Physical security is not applicable.

6 Operational Environment

This module will operate in a modifiable operational environment per the FIPS 140-2 definition. The phone is a single user device. The operating system shall be restricted to a single

operator mode of operation (i.e., concurrent operators are explicitly excluded). The external applications that make calls to the cryptographic module should belong to the single user of the cryptographic module, even when the application is serving multiple clients.

7 Key Management

Key/CSP	Service	Length	Strength	Туре	Zeroize Method	Establishme nt	Output	Persistence/ Storage
128-bits key	1.AES	128	128	Symmetric	FIPS_cipher_ ctx_cleanup	PBKDF	EDK, AES to encrypt DEK	Plain Text, Store in RAM for the lifetime of API call
192-bits key		192	192					
256-bits key		256	256					
HMAC key	3.HMA C	160	160	- HMAC key	FIPS_hmac_c tx_cleanup	Password	No	Plain Text, Store in RAM for the lifetime of API call
		224	224					
		256	256					
		384	384					
		512	512					
RNG CSPS	4. RNG	128	128	Seed and Seed key	FIPS_x931_re set	dev/random	DEK	Plain Text, Store in RAM for the lifetime of API call
		192	192					
		256	256					
Password	5. PBKDF	N/A	N/A	Password Salt	FIPS_hmac_c tx_cleanup	User Input	No	Plain Text, Store in RAM for the lifetime of API call
Salt		N/A	N/A			dev/random		

Table 6 - Key Management

• Random Number Generation

The module employs an ANSI X9.31 compliant random number generator for creation of keys which is externally seeded by the application which is using the module. The application may get the seed key from /dev/random utility, and pass the pointer of the seed key to the module by calling FIPS_x931_seed(const void *buf, int num).

Caveat: The encryption strength of AES keys are modified by available entropy of seeds that are provided to the RNG; there is no assurance of the minimum strength of the generated keys.

• Key entry and output

The module does not support manual key entry or key output. Keys or other CSPs can only be exchanged between the module and the calling application using appropriate API calls.

- Key generation
- DEK is generated using approved RNG (Certificate #1299), and output to the application.
- AES symmetric key is input by application, and is generated using approved PBKDF2 (PKCS#5).
- EDK is generated using approved AES (Certificate #2967), using the AES symmetric key to encrypt DEK.
- Key storage

The module does not provide persistent key storage for keys or CSPs. The module uses pointers to plaintext keys/CSPs that are passed in by the calling application. The module does not store any CSP beyond the lifetime of an API call. And all keys and CSPs are ephemeral and are destroyed when released by the appropriate API function calls. Keys and CSPs residing in internally allocated data structures (during the lifetime of an API call) can only be accessed using the Module defined API.

8 EMI/EMC

Lab: Reliability Laboratory of Huawei Technologies Co., Ltd Report No: SYBH(Z-EMC)007032014-1

9 Self Tests

The module performs a number of power-up and conditional self-tests to ensure proper operation of the module. Power-up tests include cryptographic algorithm known answer tests and integrity tests. The integrity tests are performed using a HMAC-SHA-1 digest calculated over the object code in the FIPS Object Module. Power-up tests are run automatically when the module is initialized. Additionally, powerup tests may be executed at any time by calling the FIPS_selftest() function and verifying it returns true. No FIPS mode cryptographic functionality will be available until after successful execution of all power-up tests. No authentication is required to perform self-tests either automatically or upon demand. The failure of any power-up self-test or continuous test causes the module to enter the Self-Test Failure state, and all cryptographic operations are disabled until the module is reinitialized with a successful FIPS_module_mode_set () call.

Power-up Tests - (Known Answer Tests):

- AES encryption/decryption 128, 192, and 256 bit keys (ECB, CBC, CFB1, CFB8, CFB128, OFB, CTR, XTS, GCM, CCM)
- HMAC-SHA-1, HMAC-SHA-224, HMAC-SHA-256, HMAC-SHA-384, HMAC-SHA-512
- SHA-1, SHA-224, SHA-256, SHA-384, SHA-512
- Random Number Generator (from known IV)

Conditional Test

Conditional tests are performed automatically as necessary and cannot be turned off. Currently, all conditional tests relate to services available only to users. Thus, conditional and critical function tests are not performed at any time in response to Crypto Officer actions.

A continuous random number generator test is performed. If values of two consecutive random numbers match, then crypto module goes into error state. In order to recover from the error state, the module must be powered off and then powered-on and re-initialized. This RNG is externally seeded by /dev/random, which is outside the module boundary.

10 Design Assurance

• Configuration Management

All source code is maintained in internal source code server, and GIT is used as code control. Release is based on the submit id which is auto-generated. Every check-in process creates a new submit id.

Revision history inside the document provides the current version of the document. Version control maintains all the previous version, and the version number of the module is defined as "FIPS 1.0.1 validated module DD MM YYYY", if there is more than one version in the same date, version number will add one more character like "FIPS 1.0.1a validate module DD MM YYYY".

Delivery

The module is never released as source code. The module is compiled to a binary and packaged in the UPDATE.APP, which is used to download to devices in manufacturing factory. And the development team and the manufacturing factory share a secured internal server for exchanging the UPDATE.APP. The factory is also a secure site with strict access control to the manufacturing facilities. The module binary is downloaded to the devices using direct binary image installation at the factory. The devices are then delivered to mobile service operators. Users can not install or modify the module. The developer has the capability to deliver software update using OTA(Over The Air) update or using SD card update. Only Huawei can deliver the update package as the device will verify the signature of the update package. Once the module is installed on the device, the Android loader will call FIPS_module_mode_set() upon startup of the device and this will power-up the module and execute the self-test procedure. Once the self-tests have completed successfully, the module is operational.

11 Mitigation of Other Attacks

No other attacks are mitigated.