

Security Policy: Astro Subscriber Motorola Advanced Crypto Engine (MACE)

Cryptographic module used in Motorola Solutions Astro APX2000, SRX2200, APX2500, APX3000, APX4000, APX4500, APX6000, APX6000XE, APX6500, APX7000, APX7000XE, and APX7500 radios.

Version: R01.01.16

Date: February 25, 2015

Table of Contents

1.	IN	TRODUCTION	3
	1.1. 1.2.	Scope Definitions	
	1.3.	Overview	
	1.4.	ASTRO SUBSCRIBER MACE IMPLEMENTATION	
	1.5.	ASTRO SUBSCRIBER MACE HARDWARE / FIRMWARE VERSION NUMBERS	4
	1.6.	ASTRO SUBSCRIBER MACE CRYPTOGRAPHIC BOUNDARY	5
	1.7.	Ports and Interfaces	6
2.	FII	PS 140-2 SECURITY LEVELS	7
3.	FII	PS 140-2 APPROVED OPERATIONAL MODES	8
	3.1.	CONFIGURATION SETTINGS FOR OPERATION AT FIPS 140-2 OVERALL SECURITY LEVEL 3	
	3.2.	NON APPROVED MODE OF OPERATION	
4.	CR	RYPTO OFFICER AND USER GUIDANCE	
	4.1.	ADMINISTRATION OF THE ASTRO SUBSCRIBER MACE IN A SECURE MANNER (CO)	
	4.2.	ASSUMPTIONS REGARDING USER BEHAVIOR (CO)	
	4.3.	APPROVED SECURITY FUNCTIONS, PORTS, AND INTERFACES AVAILABLE TO USERS	
	4.4.	USER RESPONSIBILITIES NECESSARY FOR SECURE OPERATION	
5.	SE	CURITY RULES	
	5.1.	FIPS 140-2 Imposed Security Rules	
	5.2.	Motorola Imposed Security Rules	14
6.	ID	ENTIFICATION AND AUTHENTICATION POLICY	
7.	РН	IYSICAL SECURITY POLICY	16
8.	AC	CCESS CONTROL POLICY	
	8.1.	ASTRO SUBSCRIBER MACE SUPPORTED ROLES	
	8.2.	ASTRO SUBSCRIBER MACE SERVICES	
	8.3.	Key Management	
	8.4.	CSP Access Types	
9.	MI	ITIGATION OF OTHER ATTACKS POLICY	

1. Introduction

1.1. Scope

This Security Policy specifies the security rules under which the Astro Subscriber Motorola Advanced Crypto Engine, herein identified as the Astro Subscriber MACE, must operate. Included in these rules are those derived from the security requirements of FIPS 140-2 and those imposed additionally by Motorola Solutions, Inc. These rules, in total, define the interrelationship between the:

- 1. Module Operators,
- 2. Module Services, and
- 3. Critical Security Parameters (CSPs).

1.2. Definitions

[
ALGID	Algorithm Identifier		
CBC	Cipher Block Chaining		
CFB	Cipher Feedback		
CKR	Common Key Reference		
CO	Cryptographic Officer or Crypto-Officer		
CODEC	Coder/Decode		
CPS	Customer Programming Software		
CPLD	Complex Programmable Logic Device		
CSP	Critical Security Parameter		
DRBG	Deterministic Random Bit Generator		
ECB	Electronic Code Book		
EID	Encrypted Integrated Data		
IV	Initialization Vector		
KEK	Key Encryption Key		
KID	Key Identifier		
KLK	Key Loss Key		
KMM	Key Management Message		
KPK	Key Protection Key		
KVL	Key Variable Loader		
LFSR	Linear Feedback Shift Register		
MAC	Message Authentication Code		
MACE	Motorola Advanced Crypto Engine		
NDRNG	Non-Deterministic Random Number Generator		
OFB	Output Feedback		
OMAP	Open Multimedia Applications Platform		
OTAR	Over The Air Rekeying		
TEK	Traffic Encryption Key		

1.3. Overview

The Astro Subscriber MACE provides secure key management, Over-the-Air-Rekeying (OTAR), and voice and data encryption for the following Motorola Solutions mobile and portable two-way radios:

- APX2000 (portable)
- SRX2200 (portable)
- APX2500 (mobile)
- APX3000 (portable)
- APX4000 (portable)
- APX4500 (mobile)
- APX6000 (portable)
- APX6000XE (portable)
- APX6500 (mobile)
- APX7000 (portable)
- APX7000XE (portable)
- APX7500 (mobile)

1.4. Astro Subscriber MACE Implementation

The Astro Subscriber MACE is implemented as a single-chip cryptographic module as defined by FIPS 140-2.

1.5. Astro Subscriber MACE Hardware / Firmware Version Numbers

FIPS Validated Cryptographic Module	FIPS Validated Cryptographic Module	
Hardware Kit Numbers	Firmware Version Numbers	
5185912Y01, 5185912Y03, or 5185912Y05	R01.05.12	

Note: The Astro Subscriber MACE may operate in FIPS Approved mode with Module Firmware Version number R01.02.00, R01.02.01, R01.02.02, (previously validated under FIPS 140-2 Cert. #1535) R07.11.10, R07.11.11, R01.03.13, R07.11.12, R01.04.07 (previously validated under FIPS 140-2 Cert. #1752), R01.05.12.

The Astro Subscriber MACE supports the following FIPS Approved algorithms which may be installed separately from MACE firmware using the Program Update service. While the installation of AES may be done separately, for the purposes of this validation the module includes this firmware.

Approved Algorithm	Certificate Number	Part Number	Algorithm Firmware Version Numbers
AES-256 (ECB, CBC, OFB, CFB)	819	5185912 Family	R01.00.00
AES-256 (GCM)	1295	5185912 Family	R02.00.00

Note: Either AES Firmware Version R01.00.00 or both R01.00.00 and R02.00.00 must be

loaded for the Astro Subscriber MACE to be in FIPS Approved mode.

1.6. Astro Subscriber MACE Cryptographic Boundary

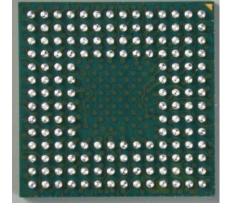


Figure 1: MACE Chip (Top)

Figure 2: MACE Chip (Interfaces)

The Astro Subscriber MACE Cryptographic Boundary is drawn around the MACE IC as shown below. The MACE IC has an SSI port (used for Data, Control, Status, and OTAR Key data), a KVL port (used for Key Data, Control, and Status), and Power Connections.

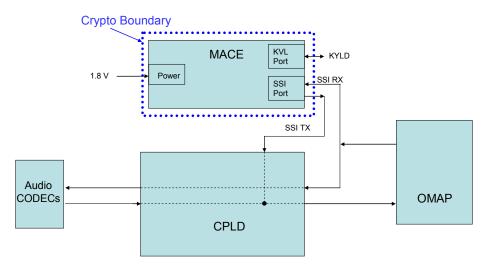


Figure 3: Cryptographic Boundary

1.7. Ports and Interfaces

The Astro Subscriber MACE provides the following physical ports and logical interfaces:

Physical Port	Qty	Logical Interface Definition	Description
Serial Synchronous Interface (SSI)	1	 Data Input Data Output Control Input Status Output 	The main physical port provided by the module. It provides access to the majority of the supported interfaces.
Key Variable Loader (KVL)	1	 Data Input Control Input Status Output 	This interface provides the input and output to a Key Variable Loader (KVL).
Self-test Indicator Interface	1	- Status Output	This interface provides status output to indicate all power-up self-tests completed successfully.
Power	1	- Power Input	This interface powers all circuitry.

2. FIPS 140-2 Security Levels

The Astro Subscriber MACE can be configured to operate at FIPS 140-2 overall Security Level 3. The table below shows the FIPS 140-2 Level of security met for each of the eleven areas specified within the FIPS 140-2 security requirements.

FIPS 140-2 Security Requirements Section	Validated Level at overall Security Level 3
Cryptographic Module Specification	3
Module Ports and Interfaces	3
Roles, Services, and Authentication	3
Finite State Model	3
Physical Security	3
Operational Environment	N/A
Cryptographic Key Management	3
EMI / EMC	3
Self-Tests	3
Design Assurance	3
Mitigation of Other Attacks	N/A

Table 2: Astro Subscriber MACE Security Levels

3. FIPS 140-2 Approved Operational Modes

The Astro Subscriber MACE can be configured to operate in a FIPS Approved mode of operation and a Non-FIPS Approved mode of operation. Documented below are the configuration settings that are required for the module to be used in a FIPS 140-2 Approved mode of operation at overall Security Level 3.

At any given time, the FIPS Status service can be used to determine whether the module is operating at overall Security Level 3 or in a non-FIPS Approved mode. Status is indicated by the FIPS STATUS RESPONSE message: Non-FIPS Compliance Mode or Level 3 FIPS Approved Mode.

3.1. Configuration Settings for operation at FIPS 140-2 overall Security Level 3

Documented below are the actions and configuration settings required to enable FIPS 140-2 overall Security Level 3.

- 1. Disable Motorola Data Communication Over The Air Rekeying (MDC OTAR). The Download Configuration Parameters service is used to configure this parameter in the module.
- 2. Disable Key Loss Key (KLK) generation. The Download Configuration Parameters service is used to configure this parameter in the module.
- 3. Disable Red Keyfill. When Red Keyfill is disabled, the module will not allow keys to be entered in plaintext form; all keys entered into the module must be encrypted. The Download Configuration Parameters service is used to configure this parameter in the module.
- 4. Only Approved and Allowed algorithms installed. The module supports the following Approved algorithms:
 - AES-256 (Cert. #819) –Used for encryption and decryption in the following Approved modes: OFB, ECB, CBC, and 8-bit CFB.
 - AES-256 GCM (Cert. #1295) Used for symmetric encryption / decryption of Encrypted Integrated Data (EID)
 - SHA-256 (Cert. #817) used for password hashing for internal password storage and digital signature verification during firmware integrity test and firmware load test
 - SHA-384 (Cert #2399)
 - HMAC/SHA-384 (Cert #1796)
 - RSA-2048 (Cert. #396) used for digital signature verification during firmware integrity test and firmware load test
 - SP800-90A CTR DRBG (Cert. #505) used for IV and KPK generation
- 5. The module supports the following Allowed algorithm:
 - AES MAC (Cert. #819) Used to provide authentication within APCO OTAR.

AES MAC as used within APCO OTAR has been vendor affirmed and is approved when used for Project 25 APCO OTAR.

- Maximal length 64-bit LFSR.
- Non-deterministic Hardware Random Number Generator
- 6. Zeroize default security parameters: The Program Update service should be used to ensure all default CSP's are zeroized. The Program Update service is invoked in the factory at programming time and can be invoked in the field either by a FLASHPort Upgrade through CPS or a FLASHPort Upgrade with a KVL and PCMCIA card.
- 7. Infinite UKEK Retention is disabled. The Download Configuration Parameters service is used to configure this parameter in the module.

3.2. Non Approved Mode of Operation

A non-FIPS Approved mode of operation is transitioned to when any of the following is true:

- 1. MDC OTAR is enabled.
- 2. KLK generation is enabled.
- 3. Infinite UKEK Retention feature is enabled. All keys are zeroized including the KEKs when the Infinite UKEK Retention feature transitions from enable to disable and also from disable to enable.

The module maintains FIPS mode status and will provide this upon operator request.

4. Crypto Officer and User Guidance

4.1. Administration of the Astro Subscriber MACE in a secure manner (CO)

The Astro Subscriber MACE requires no special administration for secure use after it is set up for use in a FIPS Approved manner. To do this, set the module's parameters to the settings listed in section 3 of this document via the Download Configuration Parameters service.

Note that all keys will be zeroized after the Program Update service has completed.

4.2. Assumptions regarding User Behavior (CO)

The Astro Subscriber MACE has been designed in such a way that no special assumptions regarding User Behavior have been made that are relevant to the secure operation of the unit.

4.3. Approved Security Functions, Ports, and Interfaces available to Users

Astro Subscriber MACE services available to the Astro Subscriber MACE User are listed in section 8.2.

No Physical Ports or Logical Interfaces are directly available to the Astro Subscriber MACE User, only indirectly through the Subscriber Radio in which the Astro Subscriber MACE is installed.

4.4. User Responsibilities necessary for Secure Operation

If the module's power is lost, the keys used for the AES GCM algorithm shall be redistributed to the module.

5. Security Rules

The Astro Subscriber MACE enforces the following security rules. These rules are separated into those imposed by FIPS 140-2 and those imposed by Motorola.

5.1. FIPS 140-2 Imposed Security Rules

- 1. The Astro Subscriber MACE inhibits all data output via the data output interface whenever an error state exists and during self-tests.
- 2. The Astro Subscriber MACE logically disconnects the output data path from the circuitry and processes when performing key generation, manual key entry, or key zeroization.
- 3. Authentication data (e.g. PINs) are entered in encrypted form. Authentication data is not output during entry.
- 4. At FIPS 140-2 overall Security Level 3, secret cryptographic keys are entered in encrypted form over a physically separate port.
- 5. The Astro Subscriber MACE enforces Identity-Based authentication.
- 6. The Astro Subscriber MACE supports a User role and a Crypto-Officer role. Authenticated operators are authorized to assume either supported role.
- 7. The Astro Subscriber MACE re-authenticates an operator when it is powered-up after being powered-off.
- 8. The Astro Subscriber MACE prevents brute-force attacks on its password by using a 10-digit password that reduces the probability of a successful random attempt to one in 10,000,000,000. It would require 100,000 attempts in one minute to lower the random attempt success rate to less than 1 in 100,000. A limit of 15 failed authentication attempts is imposed; 15 consecutive failed authentication attempts causes all TEKs and KEKs to be invalidated (key status is marked invalid) and the password to be reset to the factory default.
- 9. The Astro Subscriber MACE uses RSA-2048 to prevent brute-force attacks on the digital signature used to verify firmware integrity during a Program Update. As the Program Update service requires more than one minute to complete the random attempt success rate during a one minute period cannot be lowered to less than 1 in 100,000.
- 10. Authentication data is not output during entry.
- 11. The Astro Subscriber MACE provides the following services requiring a role:
 - Program Update
 - Transfer Key Variable
 - Privileged APCO OTAR
 - Change Active Keyset
 - Change Password
 - Encrypt Digital
 - Decrypt Digital
 - Zeroize Selected Keys
 - Key/Keyset Check

- 12. The Astro Subscriber MACE provides the following services not requiring a role:
 - FIPS Status
 - Initiate Self Tests
 - Validate Password
 - Zeroize All Keys
 - Zeroize All Keys and Password
 - Non-Privileged APCO OTAR
 - Reset
 - Shutdown
 - Extract Error Log
 - Clear Error Log
 - Download Configuration Parameters
- 13. The Astro Subscriber MACE implements all firmware using a high-level language, except the limited use of low-level languages to enhance performance.
- 14. The Astro Subscriber MACE protects secret keys and private keys from unauthorized disclosure, modification, and substitution.
- 15. The Astro Subscriber MACE provides a means to ensure that a key entered into or stored within the Astro Subscriber MACE is associated with the correct entities to which the key is assigned. Each key in the Astro Subscriber MACE is entered and stored with the following information:
 - Key Identifier 16 bit identifier
 - Algorithm Identifier 8 bit identifier
 - Key Type Traffic Encryption Key or Key Encryption Key
 - Physical ID, Common Key Reference (CKR) number, and Keyset number Identifiers indicating storage locations.

Along with the encrypted key data, this information is stored in a key record that includes a CRC over all of the fields to detect data corruption. When used or deleted the keys are referenced by CKR/Key ID/Algid, Key ID/Algid, Physical ID, or CKR/Keyset.

- 16. The Astro Subscriber MACE denies access to plaintext secret and private keys contained within the Astro Subscriber MACE.
- 17. The Astro Subscriber MACE provides the capability to zeroize all plaintext cryptographic keys and other unprotected critical security parameters within the Astro Subscriber MACE.
- The Astro Subscriber MACE provides the following non-FIPS Approved Random Number Generators to provide random numbers used as Initialization Vectors (IV) and the seeds for the Approved RNG.
 - Maximal length 64-bit LFSR.
 - Non-deterministic Hardware Random Number Generator
- 19. The Astro Subscriber MACE conforms to FCC 47 Code of Federal Regulations, Part 15, Subpart B, Unintentional Radiators, Digital Devices, Class B requirements.
- 20. The Astro Subscriber MACE performs the following self-tests:

Contract Description Description				
Self-Test	Description	Result of Self-Test Failure		
AES Encrypt & Decrypt	Each algorithm is tested by	The module enters an error		
KATs for each of the	using a known key, known	state if any Cryptographic		
following modes:	data, and if required a known	Algorithm Test fails. The		
- OFB	IV. The data is then	error state may be exited by		
- CBC	encrypted and compared with	powering the module off then		
– ECB	known encrypted data; the	on.		
– CFB (8-bit)	test passes if the final data			
– GCM	matches the known data,			
	otherwise it fails. The			
SHA-384 KAT	encrypted data is then			
	decrypted and compared with			
HMAC-SHA-384 KAT	the original plaintext; the test			
	passes if the decrypted data			
	matches the original plaintext,			
	otherwise it fails.			
DRBG KAT	The DRBG is initialized with a	The module enters an error		
	known answer seed and V	state if the DRBG KAT fails.		
	generated by the hardware	The error state may be exited		
	RNG. The DRBG is run and	by powering the module off		
	a random bit block is	then on.		
	generated. The DRBG is then			
	reseeded and another			
	random bit block is			
	generated. The two random			
	bit blocks are compared. The			
	test passes if the generated			
	data does not match.			
Firmware Integrity Test -	A digital signature is	The module enters an error		
includes the following:	generated over the code	state if the Firmware Integrity		
– SHA-256 KAT	when it is built using SHA-256	Test fails.		
 RSA 2048 Verify 	and RSA-2048 and is stored	As soon as an error indicator		
KAT	with the code upon download	is output via the status		
	into the module. When the	interface, the module		
	module is powered up the	transitions from the error state		
	digital signature is verified. If	to a state that only allows new		
	the digital signature matches	firmware to be loaded.		
	the test passes, otherwise it			
	fails.			

Table 3: Power On Self-Tests

Powering the module off then on or resetting the module using the Reset service will initiate the power-up and on-demand self-tests.

Non-Proprietary Security Policy: Astro Subscriber MACE

Self-Test	Description	Result of Self-Test Failure
Firmware Load Test	A digital signature is generated over the code when it is built using SHA-256 and RSA-2048. Upon download into the module, the digital signature is verified. If the digital signature matches the test passes, otherwise it fails.	The module enters an error state if the Firmware Load Test fails. This error state may be exited by powering the module off then on which will start the download and validation process over.
Continuous Random Number Generator Tests: - DRBG - NDRNG - LFSR	For each RNG, an initial value is generated and stored upon power up. This value is not used for anything other than to initialize comparison data. A successive call to any one of the RNGs generates a new set of data, which is compared to the comparison data. If a match is detected, this test fails; otherwise the new data is stored as the comparison data and returned to the caller.	The module enters an error state if the Continuous Random Number Generator Test fails. This error state may be exited by powering the module off then on.

Table 4: Conditional Self-Tests

- 21. The Astro Subscriber MACE outputs a status indicator via the Self-test Indicator interface to indicate all self-tests passed. A status indicator is not output via the Self-test Indicator interface whenever an error state is entered due to a failed self-test.
- 22. The Astro Subscriber MACE does not perform any cryptographic functions while in an error state.

5.2. Motorola Imposed Security Rules

- 1. The Astro Subscriber MACE does not support multiple concurrent operators.
- 2. All cryptographic module services are suspended during key loading.
- 3. After a sufficient number (15) of consecutive unsuccessful user login attempts, the module will zeroize all keys from the Key Database.
- 4. The module does not support the output of plaintext or encrypted keys.

6. Identification and Authentication Policy

The Astro Subscriber MACE supports two distinct operator roles (User and Crypto-Officer). The Astro Subscriber MACE uses a 10-digit password to authenticate the User and an RSA-2048 digital signature to authenticate the Crypto-Officer. The role of the operator is specified by selecting which physical port will be used to authenticate and access module services.

The authentication data for the Program Update service is the digital signature of the downloaded firmware.

Role	Authentication Type	Authentication Data Required
User	Identity-Based	User ID and 10-digit Password
Crypto-Officer	Identity-Based	RSA-2048 digital signature for Program Update service

Table 5: Authorized Roles

7. Physical Security Policy

The Astro Subscriber MACE is a production grade, single-chip cryptographic module as defined by FIPS 140-2 and is designed to meet Level 3 physical security requirements. The information below is applicable to Cryptographic Module hardware kit numbers 5185912Y01, 5185912Y03 and 5185912Y05, which have identical physical security characteristics.

The Astro Subscriber MACE is covered with a hard opaque epoxy coating that provides evidence of attempts to tamper with the module. The security provided from the hardness of the module's epoxy encapsulate is claimed at ambient temperature (20 to 25 degrees Celsius) only. No assurance of the epoxy hardness is claimed for this physical security mechanism outside of this range. The Astro Subscriber MACE does not contain any doors, removable covers, or ventilation holes or slits. No maintenance access interface is available. No special procedures are required to maintain physical security of the module while delivering to operators.

8. Access Control Policy

8.1. Astro Subscriber MACE Supported Roles

The Astro Subscriber MACE supports two (2) roles. These roles are defined to be the:

- User role and,
- Cryptographic Officer (Crypto-Officer or CO) role.

8.2. Astro Subscriber MACE Services

Role		Service	Description
User	СО		
	Х	Program Update	Update the module firmware. Firmware upgrades are authenticated using a digital signature. The Program Update Public Signature Key (a 2048 bit public RSA key) is used to validate the signature of the firmware image being loaded before it is allowed to be executed. All keys and CSPs are zeroized during a Program Update.
			To maintain validation, only validated firmware should be loaded. Loading non-validated firmware will invalidate the modules validation.
X		Transfer Key Variable	Transfer key variables to the MACE Key Database via a Key Variable Loader (KVL). If the Red Keyfill configuration parameter is enabled then keys will be transferred from the KVL in plaintext. If Red Keyfill is disabled, all keys transferred from the KVL will be encrypted. The Red Keyfill configuration parameter can be changed using the Download Configuration Parameters service. Any modification of the Red Keyfill parameter will zeroize all keys; therefore the operator shall reinitialize the
			module in accordance with the instructions provided in Section 3.1 of this document.
Х		Privileged APCO OTAR	Modify and query the Key Database via APCO OTAR Key Management Messages.
			This service has access to non-Approved algorithms if those algorithms are installed and selected. Only Approved algorithms should be installed to remain in an Approved mode of operation.
X		Change Active Keyset	The active keyset is used to store a group of keys for current use while inactive keysets are used to store keys for future use. This service modifies the currently active keyset used for selecting keys for encryption / decryption services.

Table 6: Services Allocated to Authorized Roles

Role		Service	Description
User	СО		
Х		Change Password	Modify the current password used to identify and authenticate the User role. Fifteen consecutive failed attempts causes the KPK to be zeroized, a new KPK to be generated, all TEKs and KEKs to be invalidated (key status is marked invalid), and the password to be reset to the factory default.
Х		Encrypt Digital	Encrypt digital voice or data.
			This service has access to non-Approved algorithms if those algorithms are installed and selected. Only Approved algorithms should be installed to remain in an Approved mode of operation.
Х		Decrypt Digital	Decrypt digital voice or data.
			This service has access to non-Approved algorithms if those algorithms are installed and selected. Only Approved algorithms should be installed to remain in an Approved mode of operation.
Х		Zeroize Selected Keys	Zeroize selected key variables from the Key Database by Physical ID (PID) or Common Key Reference (CKR).
Х		Key/Keyset Check	Obtain status information about a specific key/keyset

The following services are available without assuming an authorized role.

Service	Description							
FIPS Status	Provides current FIPS status about whether the module is operating at							
	overall Security Level 3, or in a non-Approved mode of operation.							
Initiate Self Tests	Performs module self-tests comprised of cryptographic algorithm tests,							
	firmware integrity test, and critical functions test. Initiated by module							
	reset or transition from power off state to power on state.							
Validate	Validate the current password used to identify and authenticate the User							
Password	role. Fifteen consecutive failed attempts causes the KPK to be							
	zeroized, a new KPK to be generated, all TEKs and KEKs to be							
	invalidated (key status is marked invalid), and the password to be reset							
	to the factory default.							
Zeroize All Keys	Zeroize all keys from the Key Database. (Module can be reinitialized							
	using a Key Variable Loader.)							
Zeroize All Keys	Zeroizes the KPK and all keys and CSPs in the key database and							
and Password	causes a new KPK to be generated. Resets the password to the factory							
	default. Allows user to gain controlled access to the module if the							
	password is forgotten. (Module can be reinitialized using a Key Variable							
	Loader.)							

Table 7: Unauthenticated Services

Service	Description
Non-Privileged	Hello and Capabilities Key Management Messages may be performed
APCO OTAR	without a role
Reset (Crypto	Soft reset of module to remove module from error states or a transition
Module)	from power off to power on state.
Shutdown (Crypto	Prepares module for removal of power.
Module)	
Extract Error Log	Status Request. Provides detailed history of error events.
Clear Error Log	Clears history of error events.
Download	Download configuration parameters used to specify module behavior.
Configuration	Examples include enable/disable APCO OTAR, SingleKey, or MultiKey
Parameters	mode, etc. If the Tamper configuration parameter changed the module
	will zeroize the KPK and all keys and CSPs in the key database and will
	generate and store a new KPK.

8.3. Key Management

CSPs: The following table provides a list and description of all CSPs managed by the module.

CSP Identifier	Description
SP800-90 CTR DRBG V	A 128-bit seed value used within the SP800-90A CTR DRBG. The V is not stored but temporarily exists in volatile memory and is zeroized by power cycling the module. The seed is not entered into or output from the module.
SP800-90 CTR DRBG Key	Key used to seed the SP800-90A CTR DRBG during initialization. The seed key is not stored but temporarily exists in volatile memory and is zeroized by power cycling the module. The seed key is not entered into or output from the module.
Black Keyloading Key (BKK)	A 256 bit AES key used for decrypting keys entered into the module via a KVL when the Red Keyfill configuration parameter is disabled. Stored in plaintext in non-volatile memory and zeroized through the Program Update service. The BKK is entered using the Program Update service and is not output from the module.
Image Decryption Key (IDK)	A 256-bit AES key used to decrypt downloaded images. Stored in plaintext in non-volatile memory and zeroized through the Program Update service. The IDK is entered using the Program Update service and is not output from the module.
Key Encryption Keys (KEKs)	256 bit AES key used for encryption of other keys in OTAR. Stored encrypted on KPK in non-volatile memory. Entered through the KVL or APCO OTAR. KEK's are not output from the module.
Key Protection Key (KPK)	256 bit AES key used to encrypt TEKs and KEKs stored in non-volatile memory. The KPK is not entered into or output from the module.

Table 8: CSP Definition

CSP Identifier	Description										
Password	The 10-digit password is entered encrypted on the PEK. After										
	decryption the plaintext password is not stored but temporarily exists in										
	olatile memory. The SHA-256 hash of the decrypted password is										
	compared with the hash value stored in non-volatile memory during										
	password validation. The password is not output from the module.										
Password	256 bit AES key used for decrypting password during password										
Encryption Key	validation. Stored in plaintext in non-volatile memory and zeroized										
(PEK)	through the Program Update service. The PEK is entered using the										
	Program Update service and is not output from the module.										
Traffic Encryption	256 bit AES key used for voice and data encryption. Stored encrypted										
Keys (TEKs)	on KPK in non-volatile memory. Entered through the KVL or APCO										
	OTAR. TEK's are not output from the module.										

Public Keys: The following table lists and describes all Public Keys managed by the module.

Table 9: Public Key Definition

Public Key Name	Description
Programmed Signature Key	2048 bit RSA key used to validate the signature of the firmware image being before it is allowed to be executed and is also used for authentication of the Crypto-Officer role. Loaded during manufacturing. The Programmed Signature Key is not output from the module.

8.4. CSP Access Types

Table 10: CSP Access Types

Access Type	Description
c - Check CSP	Checks status and key identifier information of key.
d - Decrypt CSP	Decrypts TEK or KEK retrieved from non-volatile memory using the KPK.
	Decrypts TEKs or KEKs entered via the KVL when the Red Keyfill configuration parameter is disabled using the Black Keyloading Key.
	Decrypts entered password with PEK during password validation.
e - Encrypt CSP	Encrypts TEK or KEK with KPK prior to storage in non-volatile memory.
g - Generate CSP	Generates KPK, SP800-90 CTR DRBG V, or SP800-90 CTR DRBG
	Кеу.
i - Invalidate CSP	Marks encrypted TEKs or KEKs stored in non-volatile memory as
	invalid. TEKs or KEKs marked invalid can then be over-written when
	new TEKs or KEKs are stored.
s - Store CSP	Stores KPK in volatile and non-volatile memory.
	Stores encrypted TEKs or KEKs in non-volatile memory, over-writing any previously invalidated TEK or KEK in that location.
	Stores plaintext BKK, PEK, or IDK in non-volatile memory.

Access Type	Description
u - Use CSP	Uses CSP internally for encryption / decryption services.
z - Zeroize CSP	Zeroizes key.

Table 11: CSP versus CSP Access

Service	CSP								Role			
	SP800-90 CTR DRBG V	SP800-90 CTR DRBG Key	BKK (Black Keyloading Key)	IDK (Image Decryption Key)	KEK (Key Encryption Key)	KPK (Key Protection Key)	Password	PEK (Password Encryption Key)	TEK (Traffic Encryption Key)	User	Crypto-Officer	No Role Required
Program Update			Z, S	u, z, s	z	z		Z, S	z		\checkmark	
Transfer Key Variable			u		i, e, z, s	u			i, e, z, s	\checkmark		
Privileged APCO OTAR			u		d, u, i, e, z, s	u			d, u, i, e, z, s	\checkmark		
Change Active Keyset										\checkmark		
Change Password					i	z, g, s	d, u, z	u	i	\checkmark		
Encrypt Digital									d, u	\checkmark		
Decrypt Digital									d, u	\checkmark		
Zeroize Selected Keys					i				i	\checkmark		
Key/Keyset Check					С				с	\checkmark		
FIPS Status					С				с	\checkmark		\checkmark
Initiate Self Tests										\checkmark		\checkmark
Validate Password					i	z, g, s	d, u, z	u	i	\checkmark	\checkmark	\checkmark
Zeroize All Keys					i				i	\checkmark		\checkmark
Zeroize All Keys and Password					i	z, g, s			i	\checkmark	\checkmark	\checkmark
Non-Privileged APCO OTAR (not for key entry)										\checkmark	\checkmark	\checkmark
Reset		g, u, z				g, s				\checkmark	\checkmark	\checkmark
Shutdown										\checkmark	\checkmark	\checkmark
Extract Error Log										\checkmark	\checkmark	\checkmark
Clear Error Log										\checkmark	\checkmark	\checkmark

Service	CSP	CSP								Role		
	SP800-90 CTR DRBG V	SP800-90 CTR DRBG Key	BKK (Black Keyloading Key)	IDK (Image Decryption Key)	KEK (Key Encryption Key)	KPK (Key Protection Key)	Password	PEK (Password Encryption Key)	TEK (Traffic Encryption Key)	User	Crypto-Officer	No Role Required
Download					i	z, g, s			i	\checkmark	\checkmark	\checkmark
Configuration												
Parameters												

9. Mitigation of Other Attacks Policy

The Astro Subscriber MACE is not designed to mitigate any specific attacks outside of those required by FIPS 140-2, including but not limited to power consumption, timing, fault induction, or TEMPEST attacks.