

Oracle Solaris Kernel Cryptographic Framework Software Version 1.0 and 1.1

FIPS 140-2 Non-Proprietary Security Policy

Level 1 Validation Version 1.2

12/12/2013

Table of	Contents
-----------------	----------

INTRODUCTION	3
Purpose	3
References	3
DOCUMENT ORGANIZATION	3
ORACLE SOLARIS KERNEL CRYPTOGRAPHIC FRAMEWORK 1.0 AND 1.1	4
Overview	4
MODULE SPECIFICATION	5
MODULE INTERFACES	8
Roles and Services	10
Crypto-Officer Role	10
User Role	11
Physical Security	12
OPERATIONAL ENVIRONMENT	12
CRYPTOGRAPHIC KEY MANAGEMENT	12
Self-Tests	17
Power-Up Self-tests	17
Conditional Self-tests	17
MITIGATION OF OTHER ATTACKS	17
SECURE OPERATION	18
INITIAL SETUP	18
CRYPTO-OFFICER GUIDANCE	18
Initialization	19
Management	19
Zeroization	
USER GUIDANCE	19
ACRONYMS	20

Introduction

Purpose

This is a non-proprietary Cryptographic Module Security Policy for the Oracle Solaris Kernel Cryptographic Framework 1.0 and 1.1 from Oracle Corporation (Oracle). This Security Policy describes how the Solaris Kernel Cryptographic Framework 1.0 and 1.1 meets the security requirements of FIPS 140-2 (Federal Information Processing Standards Publication 140-2 — *Security Requirements for Cryptographic Modules*) and how to run the module in a secure FIPS 140-2 mode. This policy was prepared as part of the Level 1 FIPS 140-2 validation of the module. FIPS 140-2 details the U.S. Government requirements for cryptographic modules. More information about the FIPS 140-2 standard and validation program is available on the National Institute of Standards and Technology (NIST) Cryptographic Module Validation Program (CMVP) website at http://csrc.nist.gov/cryptval/.

References

This document deals only with operations and capabilities of the module in the technical terms of a FIPS 140-2 cryptographic module security policy. More information is available on the module from the following sources:

- The Oracle Corporation website (<u>http://www.oracle.com</u>) contains information on the full line of products from Oracle.
- The CMVP website (<u>http://csrc.nist.gov/cryptval/</u>) contains contact information for answers to technical or sales-related questions for the module.

Document Organization

The Security Policy document is one document in a FIPS 140-2 Submission Package. In addition to this document, the Submission Package contains:

- Vendor Evidence document
- Finite State Machine
- Other supporting documentation as additional references

With the exception of this Non-Proprietary Security Policy, the FIPS 140-2 Validation Documentation is proprietary to Oracle Corporation and is releasable only under appropriate non-disclosure agreements. For access to these documents, please contact Oracle Corporation.

ORACLE SOLARIS KERNEL CRYPTOGRAPHIC FRAMEWORK 1.0 AND 1.1

Overview

The Oracle Solaris 11 operating system (OS) is a highly configurable UNIXbased operating system that is optimized to quickly and securely deploy services in traditional enterprise data centers, large scale cloud environments and small personal desktop use. Oracle preserves the long-standing guarantee of binary compatibility – applications that run on previous Oracle Solaris releases can still run unchanged on Oracle Solaris 11 within the same processor architecture: x86 or SPARC¹.

The Oracle Solaris 11 OS can be installed on either x86 or SPARC hardware architectures or run in a virtualized environment. The operating system allows one or more processors and multiple hardware peripheral and storage devices to be accessed by multiple users in order to meet user requirements.

Oracle Solaris 11 provides a suite of technologies and applications that create an operating system with optimal performance. Oracle Solaris 11 includes key technologies such as zones, ZFS file system, Image Packaging System (IPS), multiple boot environments, trusted extensions, and cryptographic framework.

The Oracle Solaris 11 OS utilizes two cryptographic modules; one in the Userland space and the second in the Kernel space. The OS uses the Oracle Solaris Userland Cryptographic Framework module for cryptographic functionality for any applications running in user space. The Oracle Solaris Userland Cryptographic Framework exposes PKCS#11² API³s, uCrypto APIs, and libmd public interfaces to provide cryptography to any application designed to utilize it.

The Oracle Solaris 11 OS also utilizes the Oracle Solaris Kernel Cryptographic Framework module to provide cryptographic functionality for any kernel-level processes that require it, via its Oracle-proprietary APIs.

This document will focus solely on the Oracle Solaris Kernel Cryptographic Framework. The Oracle Solaris Userland Cryptographic Framework is discussed in another FIPS 140-2 Non-proprietary Security Policy.

The module meets overall level 1 requirements for FIPS 140-2, and Table 1 describes the level achieved by the module in each of the eleven sections of FIPS 140-2 requirements.

¹ SPARC – Scalable Processor Architecture

² PKCS #11 – Public Key Cryptography Standards #11

³ API – Application Programming Interface

[©] Copyright 2013 Oracle Corporation

This document may be freely reproduced and distributed whole and intact including this Copyright Notice.

Section	Section Title	Level
1	Cryptographic Module Specification	1
2	Cryptographic Module Ports and Interfaces	1
3	Roles, Services, and Authentication	1
4	Finite State Model	1
5	Physical Security	N/A
6	Operational Environment	1
7	Cryptographic Key Management	1
8	EMI/EMC	1
9	Self-tests	1
10	Design Assurance	1
11	Mitigation of Other Attacks	N/A

Table 1 – Security Level per FIPS 140-2 Section

Module Specification

The Oracle Solaris Kernel Cryptographic Framework is a software module with a multi-chip standalone embodiment. The overall security level of the module is level 1. The following sections will define the physical and logical boundaries of the module.

The cryptographic module is a group of libraries that, collectively, are known as the Oracle Solaris Kernel Cryptographic Framework. The module provides cryptographic functionality for any application that calls into it. The module provides encryption, decryption, hashing, signature generation and verification, certificate generation and verification, and message authentication functions. The module can leverage the AES-NI⁴ instruction set, when operating on an Intel Xeon processor. Figure 1, below, is the logical block diagram for the module. It highlights the libraries that make up the module in orange, while illustrating the module boundary.

© Copyright 2013 Oracle Corporation

⁴ AES-NI – Advanced Encryption Standard – New Instructions

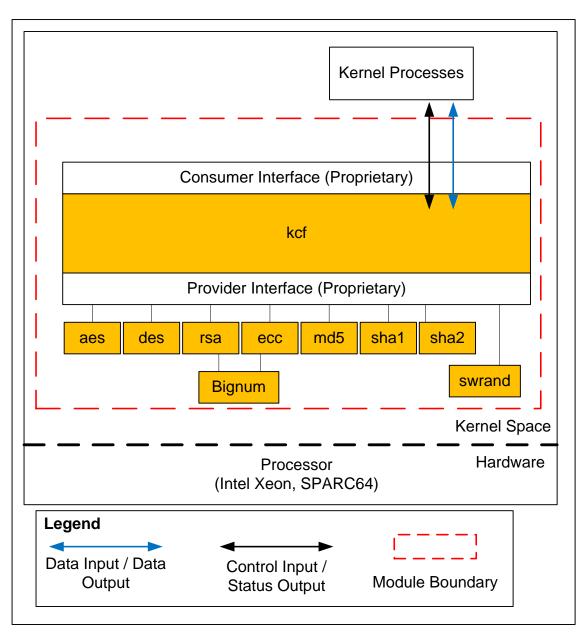


Figure 1 - Oracle Solaris Kernel Cryptographic Framework Logical Block Diagram

Figure 2 and Figure 3, below, show the hardware block diagrams for the GPCs⁵, utilizing Intel Xeon and SPARC64 processors that will execute the module.

⁵ GPC – General Purpose Computer

© Copyright 2013 Oracle Corporation

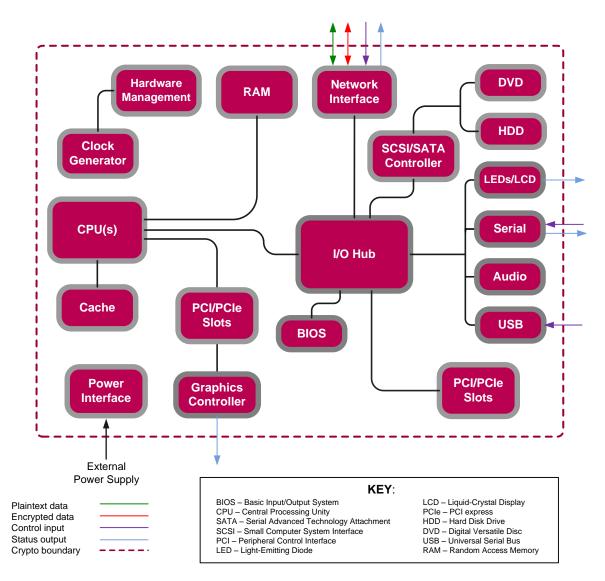


Figure 2 – Intel Xeon-based GPC Hardware Block Diagram

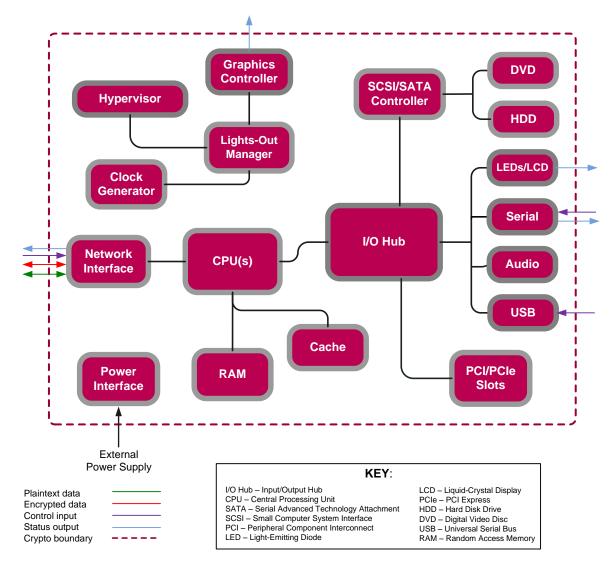


Figure 3 – SPARC64-based GPC Hardware Block Diagram

Module Interfaces

The module can be accessed by utilizing the API it exposes. This API is an Oracle-proprietary consumer interface. Table 2, below, shows the interfaces provided by the module.

Figure 4 and Figure 5, below, show the host appliances for the module. These diagrams show the physical ports that are available on the hardware.

Figure 4 – Sun Server X3-2 (formerly the Sun Fire X4170 M3 server) X3-2 Front and Rear Panel Ports (Intel-based)

Figure 5 – M3000 Enterprise Server Front and Rear Panel Ports (SPARC64-based)

FIPS 140-2 Logical Interface	Module Logical Interface	Physical Port
Data Input	Oracle-proprietary API	M3000 – Ethernet, USB ⁶ , SAS ⁷ port, Serial port (RJ ⁸ -45), UPC ⁹ ports, RCI ¹⁰ port, DVD ¹¹ optical drive
		Sun Server X3-2 – Ethernet, USB, Serial Port (RJ-45), DVD optical drive

⁶ USB – Universal Serial Bus

⁷ SAS – SCSI (Small Computer System Interface) Assisted Storage
⁸ RJ – Registered Jack
⁹ UPC – Usage Parameter Control
¹⁰ RCI – Remote Cabinet Interface
¹¹ DVD – Digital Versatile Disc

- © Copyright 2013 Oracle Corporation

FIPS 140-2 Logical Interface	Module Logical Interface	Physical Port
Data Output	Oracle-proprietary API	M3000 – Ethernet, USB, SAS port,
		Serial port (RJ-45)
		Sun Server X3-2 – Ethernet, USB,
		Serial Port (RJ-45)
Control Input	Oracle-proprietary API	M3000 – Ethernet, USB, Power button
		Sun Server X3-2 – Ethernet, Serial (RJ-
		45) USB, Power button, Locator
		button
Status Output	Oracle-proprietary API	M3000 – Ethernet, USB, VGA ¹² port
		(HD ¹³ -15), status LEDs
		Sun Server X3-2 – LEDs, Serial (RJ-45),
		Ethernet, VGA port (HD-15)
Power Input	Not Applicable	Power Supply

Table 2 – FIPS 140-2 Logical Interfaces

Roles and Services

The module relies on the host OS for authentication. There are two roles in the module (as required by FIPS 140-2) that operators may assume: a Crypto Officer role and a User role.

Crypto-Officer Role

The Crypto-Officer is any operator on the host appliance with the permissions to utilize the external cryptoadm utility, or a program with the ability to access the module APIs. The Crypto-Officer role has the ability to enable and disable FIPS mode, check the status of the FIPS module, and configure cryptographic operations of the module, including which providers will be available. The Crypto-Officer is able to utilize these services via the cryptoadm commands. Descriptions of the services available to the Crypto-Officer role are provided in Table 3, below.

The Crypto-Officer is also able to utilize all User services, described in Table 4.

Please note that the keys and CSPs listed in the table indicate the type of access required using the following notation:

- Read: The CSP is read.
- Write: The CSP is established, generated, modified, or zeroized.
- Execute: The CSP is used within an Approved or Allowed security function or authentication mechanism

¹² VGA – Video Graphics Array
 ¹³ HD – High Density

© Copyright 2013 Oracle Corporation

Service	Description	CSP ¹⁴	Type of
			Access to CSP
Run POST KATs on-	Restarting the appliance will	Crypto-Officer	Execute
demand	force the FIPS self-tests to run	credentials	
	when the module is loaded.		
	Calling the fips I 40_post()		
	function will call the Power-On		
	Self-Tests.		
Module Initialization	Use external cryptoadm utility	Crypto-Officer	Execute
	to initialize the FIPS state.	credentials	
Module	Use external cryptoadm utility	Crypto-Officer	Execute
Configuration	to configure the module.	credentials	
Zeroize keys	Format operation on the host	Crypto-Officer	Execute
	appliance's hard drive	credentials	

Table 3 – Crypto-Officer Services

The credentials for the Crypto-Officer are not considered CSPs, as requirements for module authentication are not enforced for Level 1 validation. The credentials are provided to the host OS, and are not part of the module.

User Role

The User role is able to utilize the cryptographic operations of the module, through its APIs. Descriptions of the services available to the User role are provided in Table 4, below.

Service	Description	CSP	Type of Access to CSP
Symmetric	Encrypt a block of data using a	AES ¹⁵ key	Execute
encryption	symmetric algorithm	Triple DES ¹⁶ key	
Symmetric	Decrypt a block of data using a	AES key	Execute
decryption	symmetric algorithm	Triple DES key	
Asymmetric key	Encrypt a block of data using an	RSA ¹⁷ public key	Execute
wrapping	asymmetric algorithm		
Asymmetric key	Decrypt a block of data using	RSA private key	Execute
unwrapping	an asymmetric algorithm		
Signature Generation	Generate a signature	RSA public key	Execute
Signature Verification	Verify a signature	RSA private key	Execute
Hashing	Perform a hashing operation on a block of data, using SHA-1, SHA-224, SHA-256, SHA-384, or SHA-512	N/A	N/A
HMAC ¹⁸ signing	Perform a hashing operation on a block of data, using a keyed Hashed Message Authentication Code with any of the hashing operations listed	HMAC key	Execute

 ¹⁴ CSP – Critical Security Parameter
 ¹⁵ AES – Advanced Encryption Standard
 ¹⁶ DES – Data Encryption Standard
 ¹⁷ RSA – Rivest, Shamir, Adleman
 ¹⁸ HMAC – (Keyed-) Hash-based Message Authentication Code

[©] Copyright 2013 Oracle Corporation

This document may be freely reproduced and distributed whole and intact including this Copyright Notice.

Service	Description	CSP	Type of Access to CSP
	above		
Random number generation	Generate random numbers	swrand key swrand seed key	Execute

Table 4 - User Services

Note that non-FIPS-Approved algorithms can also be used as part of these services, when the module is not operating in a FIPS-Approved mode.

Physical Security

Oracle Solaris Kernel Cryptographic Framework is a software module, which FIPS defines as a multi-chip standalone cryptographic module. As such, it does not include physical security mechanisms. Thus, the FIPS 140-2 requirements for physical security are not applicable.

Operational Environment

The module operates as part of the Oracle Solaris 11.1 SRU3 and 11.1 SRU5.5 Operating System. The module is programmed to utilize Intel's special instructions sets for hardware-accelerated AES cryptography when running on the Intel processor. The module has been tested on Oracle Solaris 11.1 SRU3 and 11.1 SRU5.5 OS, running on an M3000 Enterprise Server and Sun Server X3-2 (formerly the Sun Fire X4170 M3 server) appliance, using a SPARC64 and Intel Xeon 5600-series processor, respectively. This is a software only module the processors are outside of the logical boundary.

The Crypto-Officer shall ensure that the OS is configured to a Single-User mode of operation. Each kernel process is the only user of the module, at the time it is requesting functionality from the module. Once the module has performed a service for that process, it is released to provide services to the next kernel process requesting services. There will be only one user of the module at any given time.

Cryptographic Key Management

The module implements the following FIPS-approved algorithms:

Key or CSP	Certificat	e Number
	vI.0	vl.l
Symmetric Key		
AES: ECB ¹⁹ , CBC ²⁰ , CFB ²¹ -128, CCM ²² , GCM ²³ ,	#2309	#2573
GMAC ²⁴ , and CTR ²⁵ modes for 128, 192, and 256-bit		
key sizes		
AES: XTS ²⁶ mode for 256 and 512-bit key sizes	#2309	#2573
Triple DES: CBC and ECB mode for keying option I	#1456	#1559
Asymmetric Key		
RSA PKCS#1.5 signature generation/verification:	#1192	#1320
1024- , 2048-bit (w/ SHA-1, SHA-256, SHA-384, SHA-		
512)		
ECDSA signature generation/verification: P-192, -224,	#374	#445
-256, -384, -521; K-163, -233, -283, -409, -571; B-		
163, -233, -283, -409, -571		
Secure Hashing Standard (SHS)		
SHA-1, SHA-224, SHA-256, SHA-384, SHA-512	#1993	#2173
Message Authentication		
HMAC SHA-I, HMAC SHA-224, HMAC SHA-256,	#1423	#1595
HMAC SHA-384, HMAC SHA-512		
Random Number Generators		
swrand FIPS 186-2 Random Number Generator	#1151	#1225

Table 5 – FIPS-Approved Algorithm Implementations

NOTE: The following security functions have been deemed "deprecated" or "restricted" by NIST. Please refer to NIST Special Publication 800-131A for further details.

- The use of key lengths providing 80 bits of security strength for digital signature generation is **deprecated** after December 31, 2010.
- RSA (encrypt/decrypt, sign/verify operations) provides 80 or 112 bits of encryption strength, for 1024 or 2048-bit key sizes, respectively. RSA provides higher bits of encryption strength with higher key sizes.
- The use of RSA 1024-bit and SHA-1 for signature generation is **deprecated** from 2011 through 2013 and is **disallowed** after 2013 while the use of RSA 1024-bit and SHA-1 for signature verification is considered **legacy-use** after 2010.
- RSA (key wrapping; key establishment methodology) provides 80 or 112 bits of encryption strength, for 1024 or 2048-bit key sizes, respectively. RSA provides higher bits of encryption strength with higher key sizes; non-compliant with less than 80 bits of encryption strength.
- The use of the RNGs specified in FIPS 186-2 is **deprecated** from 2011 through December 31, 2015, and **disallowed** after 2015.

¹⁹ ECB – Electronic Codebook

²⁰ CBC – Cipher-Block Chaining

²¹ CFB – Cipher Feedback

²² CCM – Counter with CBC-MAC

²³ GCM – Galois/Counter Mode

²⁴ GMAC – Galois Message Authentication Code

²⁵ CTR – Counter

²⁶ XTS – Xor-encrypt-xor-based tweaked-codebook mode with ciphertext stealing

[©] Copyright 2013 Oracle Corporation

This document may be freely reproduced and distributed whole and intact including this Copyright Notice.

The module implements the following FIPS-Approved algorithm, however the implementation has not been validated and, as such, shall not be used in the FIPS-Approved mode of operation:

Two-key Triple-DES •

Additionally, the module implements the following non-FIPS-approved algorithms:

- $MD5^{27}$, HMAC MD5
- MD4 •
- RC4²⁸
- DES
- Blowfish •
- AES CTS²⁹, XCBC-MAC³⁰ 128-, 192-, 256-bit •
- RSA signature generation 256-, 512-bit
- RSA signature verification 256-, 512-bit

The CSPs that the module supports are listed in Table 6, below.

© Copyright 2013 Oracle Corporation

 ²⁷ MD5 – Message Digest Algorithm 5
 ²⁸ RC4 – Rivest Cipher 4
 ²⁹ CTS – Ciphertext Stealing

³⁰ XCBC-MAC – Extended Cipher-Block Chaining Message Authentication Code

This document may be freely reproduced and distributed whole and intact including this Copyright Notice.

Key or CSP	Key type	Generation	Output	Storage	Zeroization	Use
AES key	AES 128-, 192-, 256-	Imported (passed	Output from the	Reference pointer	Zeroized upon	Symmetric encryption
	bit key	as an attribute in an	module through Data	stored in volatile	completion of	
		argument)	Output interface	memory during	operation	
				execution		
AES GCM IV	Random data	Imported (passed	Never output from	Reference Pointer	Zeroized upon	IV input to AES GCM
		as an attribute in an	module	Stored in volatile	completion of	function
		argument)		memory during	operation or	
				execution	reboot	
Triple DES key	Triple DES 168-bit key	Imported (passed	Output from the	Reference pointer	Zeroized upon	Symmetric encryption
		as an attribute in an	module through Data	stored in volatile	completion of	
		argument)	Output interface	memory during	operation	
				execution		
RSA public key	RSA 1024-, 2048-,	Imported (passed	Output from module	Reference pointer	Zeroized upon	Key wrapping,
	4096-, 8192-bit key	as an attribute in an	through Data Output	stored in volatile	completion of	certificate generation,
		argument)	interface	memory during	operation	certificate verification,
				execution		signature verification
RSA private key	RSA 1024-, 2048-,	Imported (passed	Output from module	Reference pointer	Zeroized upon	Key wrapping,
	4096-, 8192-bit key	as an attribute in an	through Data Output	stored in volatile	completion of	certificate generation,
		argument)	interface	memory during	operation	certificate verification,
				execution		signature generation
RSA signature	RSA 1024-, 2048-,	Imported (passed	Output from module	Reference pointer	Zeroized upon	Signing data, signature
	4096-, 8192-bit	as an attribute in an	through Data Output	stored in volatile	completion of	verification
	signature	argument)	interface	memory during	operation	
		Commente		execution		
		Generated				
	ECDSA 163-, 192-,	internally		Defense - sinter	7	
ECDSA public key		Imported (passed	Output from module	Reference pointer	Zeroized upon	Encrypting data,
	224-, 233-, 256-, 283-, 384-, 409-, 512-, 571-	as an attribute in an	through Data Output interface	stored in volatile	completion of	verifying signature
	bit public key	argument)	internace	memory during execution	operation	
	Dit public key			execution		
ECDSA private	ECDSA 163-, 192-,	Imported (passed	Output from the	Reference pointer	Zeroized upon	Decrypting data,
key	224-, 233-, 256-, 283-,	as an attribute in an	module through Data	stored in volatile	completion of	digitally signing data
	384-, 409-, 512-, 571-	argument)	Output interface	memory during	operation	Signally Signing data
	bit private key			execution		

HMAC key	HMAC secret key	Imported	Never output from	Reference pointer	Zeroized upon	Message
			module	stored in volatile	completion of	Integrity/Authentication
				memory during	operation	
				execution		
FIPS 186-2 Seed	20-byte Hexadecimal	Generated	Never output from	Plaintext in volatile	Zeroized upon	To calculate SHA-I
	string	internally	module	memory	completion of	string in FIPS 186-2
					operation	RNG ³¹
FIPS 186-2 Seed	20 byte SHA-1 Digest	Generated	Never output from	Plaintext in volatile	Zeroized upon	To calculate SHA-I
Key		internally	module	memory	completion of	string in FIPS 186-2
					operation	RNG

Table 6 – Listing of Key and Critical Security Parameters

³¹ RNG – Random Number Generator

[©] Copyright 2013 Oracle Corporation This document may be freely reproduced and distributed whole and intact including this Copyright Notice.

Self-Tests

In order to prevent any secure data from being released, it is important to test the cryptographic components of a security module to ensure all components are functioning correctly.

Power-Up Self-tests

To confirm correct functionality, the software library performs the following self-tests:

- Software Integrity Test (HMAC SHA-1)
- Known Answer Tests (KATs)
 - AES KAT
 - Triple-DES KAT
 - RSA sign/verify KAT
 - o SHA-1, SHA-224, SHA-256, SHA-384, SHA-512 HMAC KAT
 - o SHA-1, SHA-224, SHA-256, SHA-384, SHA-512 KAT
 - o swrand FIPS 186-2 RNG KAT
- Pairwise Consistency Tests
 - ECDSA signature generation/verification

Conditional Self-tests

The Solaris Kernel Cryptographic Framework performs the following conditional self-tests:

- swrand FIPS 186-2 Continuous RNG test
- swrand Entropy Continuous RNG test

Data output from the module is inhibited, while performing self-tests. Should any of the power-up self-tests or conditional self-tests fail, the modules will cease operation, inhibiting any further data output from the modules. The modules will need to reboot and perform power-up self-tests. Successful completion of the power-up self-tests will return the module to normal operation.

Mitigation of Other Attacks

This section is not applicable. The module does not claim to mitigate any attacks beyond the FIPS 140-2 Level 1 requirements for this validation.

SECURE OPERATION

The Oracle Solaris Kernel Cryptographic Framework meets Level 1 requirements for FIPS 140-2. The sections below describe how to place and keep the module in a FIPS-approved mode of operation.

Initial Setup

The first time that the Solaris operating system is booted, the Crypto-Officer must use cryptoadm to make the changes necessary to enable FIPS mode. The Crypto-Officer must use the "cryptoadm enable *<provider name> <mechanism list>*" command to enable the necessary providers.

The following provider list is to be used when enabling providers:

- aes Provides AES algorithm support
- des Provides Triple DES algorithm support
- ecc Provides Elliptic-Curve DSA algorithm support
- rsa Provides RSA algorithm support
- md5 Provides MD5 algorithm support (for TLS purposes)
- sha1 Provides SHA-1 and HMAC SHA-1 algorithm support
- sha2 Provides SHA-2 and HMAC SHA-2 algorithm support
- swrand Provides FIPS 186-2 RNG support

Note that the use of MD5 is allowed in the TLS or DTLS³² protocol only; MD5 shall not be used as a general hash function in an Approved mode of operation.

Next, the Crypto-Officer must create a new boot environment, using the "beadm create <name>" command, where the name is one provided by the Crypto-Officer. This creates a boot environment which is a clone of the currently running environment, to be used if there is a panic or other error with initialization. The Crypto-Officer must then input the command "cryptoadm enable fips-140", in order to enable FIPS mode. The module must then be restarted by a full system reboot. Once the module loads, it will perform power-on cryptographic self-tests. Once all tests are successful, the module will begin to operate in a FIPS-Approved mode.

Crypto-Officer Guidance

The Crypto-Officer is responsible for making sure the module is running in FIPS-Approved mode of operation and to ensure that only FIPS-Approved algorithms are utilized. The following algorithms and key sizes, provided by the module, cannot be used in FIPS-Approved mode of operation:

• MD5 – For non-TLS uses

© Copyright 2013 Oracle Corporation

³² DTLS – Datagram Transport Layer Security

This document may be freely reproduced and distributed whole and intact including this Copyright Notice.

- HMAC MD5
- RC4
- DES
- Blowfish
- 2-key Triple DES
- AES CTS, XCBC-MAC 128-, 192-, 256-bit
- RSA signature generation 256-, 512-bit
- RSA signature verification 256-, 512-bit

Initialization

It is the Crypto-Officer's responsibility to configure the module into the FIPS-Approved mode.

Management

Using the commands available to the Crypto-Officer, outlined in Table 3, the cryptoadm utility can be used to configure and manage the module.

Zeroization

As shown in Table 6, certain keys are stored on the host appliance's hard drive. A format of the host appliance's hard-drive will zeroize all keys.

User Guidance

It is the responsibility of the User kernel processes to ensure that only FIPS-Approved algorithms and providers are being utilized by their commands. The User is required to operate the module in a FIPS-Approved mode of operation. In order to maintain FIPS-mode, the User must do the following:

• Only utilize the module interfaces to call FIPS-Approved algorithms

ACRONYMS

AES	Advanced Encryption Standard
AES-NI	Advanced Encryption Standard – New Instructions
API	Advanced Energyption Standard – New Instructions Application Programming Interface
CBC	Cipher-Block Chaining
CCM	Counter with CBC-MAC
CFB	Cipher Feedback
CMVP	Cryptographic Module Validation Program
CSP	Critical Security Parameter
CTR	Counter
CTS	Ciphertext Stealing
DES	Data Encryption Standard
DVD	Digital Versatile Disc
ECB	Electronic Codebook
ECDSA	Elliptic-Curve Digital Signature Algorithm
EMC	Electromagnetic Compatibility
EMI	Electromagnetic Interference
ESP	Encapsulating Security Payload
FCC	Federal Communication Commission
FIPS	Federal Information Processing Standard
GCM	Galois/Counter Mode
GPC	General Purpose Computer
HD	High Density
HMAC	(Keyed-) Hash-based Message Authentication Code
KAT	Known Answer Test
LED	Light Emitting Diode
MAC	Message Authentication Code
MD5	Message Digest Algorithm 5
NIST	National Institute of Standards and Technology
OS	Operating System
PKCS	Public Key Cryptography Standards
RCI	Remote Cabinet Interface
RJ	Registered Jack
RNG	Random Number Generator
RSA	Rivest Shamir and Adleman
SAS	Small Computer System Interface-Assisted Storage
SHA	Secure Hash Algorithm
SPARC	Scalable Processor Architecture
UPC	Usage Parameter Control
USB	Universal Serial Bus
VGA	Video Graphics Array
XCBC-MAC	Extended Cipher-Block Chaining Message
	Authentication Code
XTS	Xor-encrypt-xor-based tweaked-codebook mode
	with ciphertext stealing
	1 0