Samsung Key Management Module

FIPS 140-2 Security Policy

version 1.8 Last Update: 2013-11-04

1. Introduction	. 4
1.1. Purpose of the Security Policy	. 4
1.1. Target Audience	. 4
2. Cryptographic Module Specification	. 5
2.1. Description of Module	. 5
2.2. Description of Approved Mode	. 5
2.3. Cryptographic Module Boundary	. 6
2.3.1. Software Block Diagram	. 6
2.3.2. Hardware Block Diagram	. 7
3. Cryptographic Module Ports and Interfaces	. 8
4. Roles, Services and Authentication	. 9
4.1. Roles	. 9
4.2. Services	. 9
4.3. Operator Authentication	10
4.4. Mechanism and Strength of Authentication	10
5. Finite State Machine	11
6. Physical Security	12
7. Operational Environment	13
7.1. Policy	13
8. Cryptographic Key Management	14
8.1. Random Number Generation	14
8.2. Key Generation	14
8.2.1. Master key	14
8.2.2. Device encryption key	14
8.2.3. Encrypted device encryption key (EDK) and EDK payload	14
8.3. Key Entry and Output	15
8.4. Key Storage	15
8.5. Zeroization Procedure	15
9. Electromagnetic Interference/Electromagnetic Compatibility (EMI/EMC)	16
10. Self Tests	17
10.1. Integrity Check	17
10.2. Conditional Tests	17
11. Design Assurance	19

11.1. Configuration Management	19
11.2. Delivery and Operation	
12. Mitigation of Other Attacks	
13. Glossary and Abbreviations	
14. References	

1. Introduction

This document is a non-proprietary FIPS 140-2 Security Policy for the Samsung Key Management Module. It contains a specification of the rules under which the module must operate and describes how this module meets the requirements as specified in FIPS PUB 140-2 (Federal Information Processing Standards Publication 140-2) for a Security Level 1 multi-chip standalone software module.

1.1. Purpose of the Security Policy

There are two major reasons that a security policy is required:

- To provide a specification of the cryptographic security that will allow individuals and organizations to determine whether a cryptographic module, as implemented, satisfies a stated security policy.
- To describe to individuals and organizations the capabilities, protection, and access rights provided by the cryptographic module, thereby allowing an assessment of whether the module will adequately serve the individual or organizational security requirements.

1.1. Target Audience

This document has the following audience:

- Those specifying cryptographic modules
- Administrators of the cryptographic module(s)
- Users of the cryptographic module(s)

2. Cryptographic Module Specification

This document is the non-proprietary security policy for the Samsung Key Management Module, and was prepared as part of the requirements for conformance to Federal Information Processing Standard (FIPS) 140-2, Level 1.

The following section describes the module and how it complies with the FIPS 140-2 standard in each of the required areas.

2.1. Description of Module

The Samsung Key Management Module is a software-only Security Level 1 cryptographic module that provides key management services for user space applications. The Key Management module runs on an ARM processor.

The following table shows the overview of the security level for each of the eleven sections of the validation.

Security Component	Security Level
Cryptographic Module Specification	1
Cryptographic Module Ports and Interfaces	1
Roles, Services, and Authentication	1
Finite State Model	1
Physical Security	N/A
Operational Environment	1
Cryptographic Key Management	1
EMI/EMC	1
Self Tests	1
Design Assurance	3
Mitigation of Other Attacks	N/A

Table 1: Security Levels

The module has been tested on the following platforms:

Module/Implementation	Device	O/S & Ver.
Samsung Key Management Module (KM1.1)	Galaxy S2	Android Ice-cream Sandwich 4.0
Samsung Key Management Module (KM1.1)	Galaxy S3	Android Ice-cream Sandwich 4.0
Samsung Key Management Module (KM1.1)	Galaxy Note II	Android Jelly Bean 4.1
Samsung Key Management Module (KM1.3)	Galaxy S4	Android Jelly Bean 4.2

Table 2: Tested Platforms

2.2. Description of Approved Mode

The crypto module has only FIPS 140-2 approved mode.

In Approved mode the module will support the following approved functions:

 \bigcirc 2013 Samsung/atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice.

- AES (ECB)
- SHA-256
- RNG (ANSI X9.31)
- HMAC-SHA-256
- Password-Based Key Derivation Function (PBKDF) (NIST 800-132)

The CAVP certificate numbers for each approved algorithm is provided in Table 5 in section 4.2. The Key Management module has only FIPS approved mode.

2.3. Cryptographic Module Boundary

2.3.1. Software Block Diagram

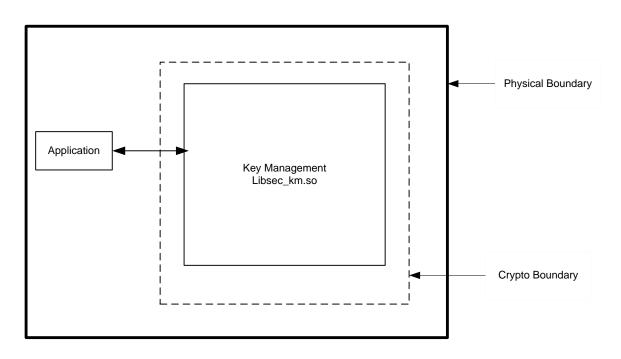


Figure 1: Software Block Diagram

The binary image that contains the Key Management module is as follows:

- libsec_km.so (version KM1.1) Galaxy S2
- libsec_km.so (version KM1.1) Galaxy S3
- libsec_km.so (version KM1.1) Galaxy Note II
- libsec_km.so (version KM1.3) Galaxy S4

Related documentation:

© 2013 Samsung/atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice.

•

- S/W Detailed Level Design (FIPS_KM_Func_Design.docx) v2.2
- Samsung Key Management Cryptographic Module (SamsungKeyManagement_SPv1.8.docx)

Note: The master component list is provided in Section 2.14 of S/W Detailed Level Design document. Please contact the vendor (as specified on the FIPS 140-2 Validation list) to request access to the documentation related to the module.

2.3.2. Hardware Block Diagram

This figure illustrates the various data, status and control paths through the cryptographic module. The module consists of standard integrated circuits, including processors, and memory. The module does not include any security-relevant, semi- or custom integrated circuits or other active electronic circuit elements. The physical module includes power inputs and outputs, and internal power supplies. The cryptographic boundary contains only the security-relevant software elements that comprise the module.

Figure 2: Hardware Block Diagram

3. Cryptographic Module Ports and Interfaces

FIPS Interface	Ports
Data Input	API input parameters
Data Output	API output parameters
Control Input	API function calls
	API return codes; device log file; the status of the module is provided at UI via the status API
Power Input	Physical power connector

Table 3: Ports and Interfaces

4. Roles, Services and Authentication

4.1. Roles

Role	Services (see list below)
User	Encryption, Decryption, Random Numbers, Digest Creation, Key Generation, Change Password, Verify Password, Check Status
Crypto Officer	Configuration, Encryption, Decryption, Random Numbers, Initialization of Module, Digest Creation, Key Generation, Change Password, Verify Password, Check Status

Table 4: Roles

The module meets all FIPS 140-2 level 1 requirements for Roles and Services, implementing both User and Crypto Officer roles. The module does not allow concurrent operators.

4.2. Services

Role	Service	CSP	Modes	FIPS Approved (Cert #)	Access (Read, Write, Execute)
User, Crypto Officer	AES encryption and decryption	256 bit keys	ECB	(Cert #2048, 2098, 2142, 2143, 2257, 2393)	R, W, EX
User, Crypto Officer	HMAC- SHA-256	HMAC Key	N/A	(Cert #1245, 1273, 1309, 1310, 1384, 1484)	R, W, EX
User, Crypto Officer	SHA-256	N/A	N/A	(Cert #1792, 1822, 1864, 1865, 1944, 2055)	R, W, EX
User, Crypto Officer	RNG ANSI X9.31	Seed Key	AES-128	(Cert #1069, 1080, 1097, 1098, 1127, 1185)	R, W, EX
User, Crypto Officer	PBKDF SP 800- 132 (Generate Key)	Password, DEK, EDK	N/A	Vendor affirmed	R, W, EX
User, Crypto Officer	PBKDF SP 800- 132 (Verify Password)	Password, EDK	N/A	Vendor affirmed	R, W, EX
User, Crypto Officer	PBKDF SP 800- 132 (Password Change)	Password, EDK	N/A	Vendor affirmed	R, W, EX
User, Crypto Officer	PBKDF SP 800- 132 (Get Key)	Password, EDK	N/A	Vendor affirmed	R, W, EX
Crypto Officer	Initialization	N/A	N/A	N/A	N/A
User, Crypto Officer	Self Test	N/A	N/A	N/A	N/A
User, Crypto Officer	Check Status/Get State	N/A	N/A	N/A	R

 $\ensuremath{\mathbb{C}}$ 2013 Samsung/atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice.

Table 5: Services

4.3. Operator Authentication

There is no operator authentication; assumption of role is implicit by action.

4.4. Mechanism and Strength of Authentication

No authentication is required at security level 1; authentication is implicit by assumption of the role.

5. Finite State Machine

For information pertaining to the Finite State Model, please refer to the S/W Detailed Level Design document.

6. Physical Security

The module is comprised of software only and thus does not claim any physical security.

7. Operational Environment

This module will operate in a modifiable operational environment per the FIPS 140-2 definition.

7.1. Policy

Both the phone and the tablet are single user devices. The operating system shall be restricted to a single operator mode of operation (i.e., concurrent operators are explicitly excluded).

The external applications that make calls to the cryptographic module should belong to the single user of the cryptographic module, even when the application is serving multiple clients.

8. Cryptographic Key Management

8.1. Random Number Generation

The module employs an ANSI X9.31 compliant random number generator for creation of keys which is externally seeded by the /dev/random utility which provides entropy of 128 bits.

The /dev/random utility is outside of the cryptographic boundary of this module.

Caveat: The module generates cryptographic keys whose strengths are modified by available entropy

8.2. Key Generation

The following keys/CSPs are used in the key management module:

- Seed Key
- Password: User entered 4 to 32 characters long
- Master key: Generated using PBKDF
- Device encryption key: 256 bits long, generated from RNG
- Encrypted device encryption key: Encrypted DEK with master key using AES
- EDK Payload or Payload: consists of EDK, salt, HMAC of EDK

8.2.1. Master key

Master Key (MK) is generated using Password-based key derivation function (NIST 800-132).

Password length must be greater than 4, but cannot be greater than 32 characters.

Note: As per NIST 800-132, passwords shorter than 10 characters are usually considered to be weak.

This master key is used as an AES encryption key (256 bits) to encrypt the device encryption key (DEK). It is also used to compute HMAC with SHA-256.

8.2.2. Device encryption key

Device encryption key (DEK) is derived as 32 bytes read from RNG.

8.2.3. Encrypted device encryption key (EDK) and EDK payload

DEK is protected by encrypting it with the master key. The resulting encrypted key is called EDK.

8.3. Key Entry and Output

The module does not support manual key entry or key output. Keys or other CSPs can only be exchanged between the module and the calling application using appropriate API calls. The output of PBKDF is DEK, which is supplied to the calling application via API call.

8.4. Key Storage

The encryption key (DEK) for the purposes of storage, is randomly generated which is protected using master key.

8.5. Zeroization Procedure

This is a dynamic library module which provides API based services. All the temporary variables for CSP are zeroized using memset() function, which is a Linux kernel function which fills memory with a constant byte. In this case, the module performs zeroization by filling the memory with zeroes. DEK is zeroized using the zeroization API. It is the responsibility of the calling application to zeroize DEK by invoking this function.

For more information on APIs, please refer to the S/W Detailed Level Design document.

9. Electromagnetic Interference/Electromagnetic Compatibility (EMI/EMC)

Lab Name: PC Engineering Laboratory, Inc FCC Registration: #90864

For information related to FCC ID of the devices, please refer to the S/W Detailed Level Design document.

10. Self Tests

The power-on-self-test is executed automatically during the loading of the module without any operator intervention. If the self test is successful, the module enters the FIPS mode. If the self test fails, the module will be put in error state and thus disabled. There will be an indicator in User Interface via the status API. For details on status specific API, please refer to the Functional Design document.

During self test, the value calculated is verified against the known answer. If there is no match, then immediately the module enters into FIPS_ERR state. Once the module is in FIPS_ERR state, the module becomes unusable via any interface.

The module implements each of the following Known Answer Tests separately:

- AES encryption/decryption
- HMAC-SHA-256
- SHA-256
- Random Number Generator

Users can check the module status in two ways:

- From the main screen, start the Settings application. Under the Settings menu, go to "About Phone." Status is displayed in the listings.
- When device encryption is enabled, the Settings application will not be available because a password is required to show the main screen. In such cases, the error status is shown on the password screen itself.

10.1. Integrity Check

0

Build Time

- HMAC-SHA-256 calculated on libsec_km.so (dynamic library) file
 - HMAC appended to libsec_km.so file

Run Time

- libsec_km.so is read as a file
- When Integrity test routine is called
 - Perform HMAC-SHA-256 on the read libsec_km.so value in ram
 - Read stored HMAC value located after libsec_km.so (last 32 bytes)
 - If calculated and stored values do not match, set error state, STATUS ERROR INTEGRITY and the system property as "error integrity"

10.2. Conditional Tests

A continuous random number generator test is performed during each use of the approved RNG. If values of two consecutive random numbers match, then crypto module goes into error state. This

RNG is externally seeded by /dev/random, which is also subjected to a CRNG test. Note that /dev/random is outside the module boundary.

11. Design Assurance

11.1. Configuration Management

All source code is maintained in internal source code servers and the tool, Perforce, is used as code control. Release is based on the Change List number maintained by Perforce, which is auto-generated. Every check-in process creates a new change list number.

Versions of controlled items include information about each version. For documentation, revision history inside the document provides the current version of the document. Version control maintains the all the previous version and the version control system automatically numbers revisions.

For source code, unique information is associated with each version such that source code versions can be associated with binary versions of the final product.

All documents are maintained in an internal document server per project. The versioning tool used is Sub version (svn). The version number is auto generated by the tool and version is controlled by a check-in and check-out mechanism.

In the development team, only authorized developers verified by login/password is allowed to access permitted documents in version control system.

11.2. Delivery and Operation

The key management module is never released as Source code. It may be released as Source for internal purposes based on Change List number generated by svn.

Official release binaries can only be made through build system, run by the Software Project Lead.

Once the device enters manufacturing phase, source code branch is locked. Once it is locked, source control system provides only read access. Thus, no one can then modify the source code in the Perforce depot.

Final binary thus built is registered with its hash value to internal system which is not connected to any other network.

Only authorized personnel through VPN can register the binary to automated manufacturing system, so that it can be downloaded to hardware without any manual intervention. Employees are not allowed to bring in any personal belongings to the manufacturing facility and entrance is controlled with employee ID based badge access and monitored using CCTV.

The binary is released only by Samsung released tool and OTA (Over the Air). Over the air mechanism is controlled by service providers. If the binary is modified by unauthorized entity, the device has a feature to detect the change and thus not accept the binary modified by an unauthorized entity.

12. Mitigation of Other Attacks

No other attacks are mitigated.

13. Glossary and Abbreviations

AES	Advanced Encryption Specification
CAVP	Cryptographic Algorithm Validation Program
СВС	Cipher Block Chaining
ССМ	Counter with Cipher Block Chaining-Message Authentication Code
CFB	Cipher Feedback
СМТ	Cryptographic Module Testing
СМУР	Cryptographic Module Validation Program
CSP	Critical Security Parameter
СVТ	Component Verification Testing
DEK	Device Encryption Key
DES	Data Encryption Standard
DSA	Digital Signature Algorithm
EAL	Evaluation Assurance Level
EDK	Encrypted Device Encryption Key
FSM	Finite State Model
HMAC	Hash Message Authentication Code
MAC	Message Authentication Code
МК	Master Key
NIST	National Institute of Science and Technology
NVLAP	National Voluntary Laboratory Accreditation Program
OFB	Output Feedback
O/S	Operating System
PBKDF	Password Based Key Derivation Function
RNG	Random Number Generator
RNGVS	Random Number Generator Validation System
RSA	Rivest, Shamir, Addleman
SDK	Software Development Kit
SHA	Secure Hash Algorithm
SHS	Secure Hash Standard
SLA	Service Level Agreement

- **SOF** Strength of Function
- SSH Secure Shell
- **SVT** Scenario Verification Testing

TDES Triple DES	
-----------------	--

TOE Target of Evaluation

UI User Interface

 $\ensuremath{\mathbb{C}}$ 2013 Samsung/atsec information security. This document can be reproduced and distributed only whole and intact, including this copyright notice.

14. References

[1] FIPS 140-2 Standard, http://csrc.nist.gov/groups/STM/cmvp/standards.html

- [2] FIPS 140-2 Implementation Guidance, http://csrc.nist.gov/groups/STM/cmvp/standards.html
- [3] FIPS 140-2 Derived Test Requirements, <u>http://csrc.nist.gov/groups/STM/cmvp/standards.html</u>

[4] FIPS 197 Advanced Encryption Standard, http://csrc.nist.gov/publications/PubsFIPS.html

[5] FIPS 180-3 Secure Hash Standard, <u>http://csrc.nist.gov/publications/PubsFIPS.html</u>

[6] FIPS 198-1 The Keyed-Hash Message Authentication Code (HMAC), http://csrc.nist.gov/publications/PubsFIPS.html

[7] FIPS 186-3 Digital Signature Standard (DSS), <u>http://csrc.nist.gov/publications/PubsFIPS.html</u>

[8] The Random Number Generator Validation System (RNGVS), http://csrc.nist.gov/groups/STM/cavp/documents/rng/RNGVS.pdf