

FIPS 140-2 Security Policy

for

Nuvoton Technology Corporation

Nuvoton TPM 1.2

Hardware Version: FD5C37 Firmware version: 4.1.5

Document Version: 1.13

Last Revision: Sep 10 2013

Table of Contents

Contents

1. General	4
2. Cryptographic Functions	7
3. Ports and Interfaces.	8
4. Roles, Services and Authentication	9
5. Cryptographic Key Management	
6. Power-On Self Tests.	15
7. Conditional Self Tests	
8. Crypto Officer Guidance	
9. User Guidance	
10. Acronyms	

FIPS 140-2 Security Policy for Nuvoton Cryptographic Module

List of Tables

Table 1. Security Levels	6
Table 2. Cryptographic Functions.	7
Table 3 Interfaces and ports	8
Table 4. Roles	9
Table 5. Services	10
Table 6. Cryptographic Keys	14
Table 7. Self-tests.	15

1. General

Nuvoton Trusted Platform Module is a hardware cryptographic module, which implements advanced cryptographic algorithms, including symmetric and asymmetric cryptography, as well as key generation and random number generation.

The module is a single chip module, which provides cryptographic services utilized by external applications.

The module meets commercial-grade specifications for power, temperature, reliability, and shock/vibrations.

The module models used for the testing are as follows:

• Nuvoton TPM 1.2

Hardware version: FD5C37 Firmware version: 4.1. 5

Note: the model designation above corresponds to one single model of the product.

An image depicting the module is provided below.

Figure 1: Hardware and Physical Cryptographic Boundary

The physical security boundary of the module is the outer boundary of the chip packaging.

A logical diagram of the module is provided below

Figure 2: Logical Diagram

The module was tested to meet overall Security Level 1 of the FIPS 140-2 standard. The Security Level per FIPS 140-2 section is specified below

FIPS 140-2 Section	Security Level
Cryptographic Module Specification	1
Cryptographic Module Ports and Interfaces	1
Roles, Services and Authentication	1
Finite State Model	1
Physical Security	1
Operating Environment	N/A
Cryptographic Key Management	1
EMI/EMC	1
Self-Tests	1
Design Assurance	1
Mitigation of Other Attacks	N/A

Table 1. Security Levels

2. Cryptographic Functions.

The module implements the following Cryptographic Functions.

Cryptographic Function	Key Size	Use	Certificate Number
	Approved I	Functions	
AES encrypt Modes: ECB, CTR	128 bits	Encryption	#2354
RSA sign/verify	1024 bits, 2048 bits	Digital Signatures	#1215
SHS hash SHA-1	N/A	Message Digest	#2028
HMAC keyed hash HMAC-SHA-1	160 bits	Keyed Message Digest	#1460
FIPS 186-3 Generation of RSA Keys	2048	Key Pair Generation	#1215
FIPS 186-2 RNG	N/A	Random number generation, generation of symmetric keys	#1174
	Approved	Services	
CVL (SP 800-135 rev1)			#59
Allowed for use functions			
RSA Key Wrapping	1024, 2048 bits	Wrap/Unwrap symmetric keys	N/A
Hardware-based non-Approved non- deterministic RNG (entropy source).	N/A	Obtain the seed and the seed key for the FIPS 186-2 RNG.	N/A

Table 2. Cryptographic Functions.

In the Approved mode of operation the module supports key sizes from 1024 or 2048 bits for RSA key wrapping, which corresponds to the effective key strength from 80 or 112 bits.

3. Ports and Interfaces.

The physical ports of the module are I2C Bus, LPC Bus.

The logical interfaces and their mapping to physical ports of the module are described below

Logical Interface	Description	Physical Port(s)
Control Input Interface	Control Input commands issued to the chip	I2C Bus/LPC Bus
Status Output Interface	Status data output by the chip	I2C Bus/LPC Bus
Data Input Interface	Data provided to the chip as part of the data processing commands	I2C Bus/LPC Bus
Data Output Interface	Data output by the chip a part of the data processing commands	I2C Bus/LPC Bus
Power Interface	Power interface of the chip	Power and ground pins

Table 3 Interfaces and ports

The module does not include a maintenance interface.

4. Roles, Services and Authentication

The services provided by the module do not require authentication.

The module always runs in the Approved mode of operation.

The module implements the following roles:

Role	High Level Description
Crypto Officer	Installs and configures the product, manages users
User	Executes crypto algorithms and generates keys

Table 4. Roles.

The module provides a set of services described below. For each service, a description of the service is provided and roles in which the service is available are specified.

Service	Description	Role
Get Status	The module implements a Get Status command that returns the status of the module, including success or failure of self- tests	Crypto Officer
Run Self- Tests	The module runs power-up self-tests automatically, when the module is powered on. One can execute self-tests on demand by power-cycling the module	Crypto Officer
Encrypt	Encrypt data	User
Zeroize	Zeroize (irreversibly destroy) module's cryptographic keys and CSPs The keys and CSPs stored in the non-volatile and volatile memory are zeroized by executing the key/entity zeroization commands	Crypto Officer
	TPM_OwnerClear	

FIPS 140-2 Security Policy for Nuvoton Cry	ptographic Module
--	-------------------

Service	Description	Role
MAC / MAC Verify	Calculate/Verify MAC for data	User
Key Generate	Generate symmetric encryption keys or HMAC keys	User
RSA Sign/Verify	Sign/Verify data using RSA	User
RSA Wrap /Unwrap	Wrap/Unwrap cryptographic keys using RSA	User
RSA Key Generate	Generate RSA public-private key pairs	User
Key Import	Import wrapped symmetric keys and public-private keys pairs	User
TPM Identity	Authenticate TPM Identity to other parties	User
TPM Endorseme nt	Prove to other parties that TPM is a genuine TPM	User
Unbinding	Unbind symmetric keys using RSA Private Binding Key	User
TPM Get Random	Get random data	User
TPM Stir Random	Add entropy to the random bit generator	User
Install Module	Install Module	Crypto Officer

Table 5. Services.

5. Cryptographic Key Management.

The table below specifies each cryptographic key utilized by the module. For each key the table provides a description of its use and derivation or import and storage.

Key or CSP	Usage	Service/Access	Origin/Storage
AES symmetric	Used to encrypt	Encrypt: R	Generated or
encryption	data		imported by the
keys		Key Gen : W	module, stored in
		Koy Wran /IInwran	VIP OF IN NON- volatilo Flach in
		W	plaintext
			P
		Key Import: W	
		Zeroize : W	
RSA public	Used to verify	RSA Sign/Verity : R	Generated or
signing keys	data	RSA Key Gen : W	module, stored in
		non noy don't tr	volatile RAM or
		Zeroize : W	in non-volatile
			Flash in plaintext
		Key Wrap/Unwrap:	
		W	
		Key Import: W	
RSA private	Used to sign data	RSA Sign/Verify : R	Generated or
signing keys			imported by the
			module, stored in
		RSA Key Gen : W	volatile RAM or
		Key Import: W	Flash in
		ney import w	plaintext
		Zeroize : W	
RSA public	Used to wrap	RSA Wrap/Unwrap :	Generated or
storage keys	symmetric keys	K	imported by the module stored in
		Key Import: W	volatile RAM or
		mporti m	in non-volatile
		RSA Key Gen : W	Flash in plaintext
		-	
		Zeroize : W	

RSA private storage keys	Used to unwrap symmetric keys	RSA Wrap/Unwrap: R	Generated or imported by the module, stored in
		RSA Key Gen : W	volatile RAM or in non-volatile
		Key Import: W	Flash in plaintext
		Zeroize : W	-
RSA public identity keys	Used to prove identity of TPM	TPM Identity: R	Generated or imported by the
Tachtery ney b		RSA Key Gen : W	module, stored in volatile RAM or
		Key Import: W	in non-volatile Flash in plaintext
		Zeroize : W	
RSA private identity keys	Used to prove identity of TPM	TPM Idenity : R	Generated or imported by the
		RSA Key Gen : W	module, stored in volatile RAM or
		Key Import: W	in non-volatile Flash in
		Zeroize : W	plaintext
RSA public binding keys	Used to by an external entity to	Data Binding : R	Generated or imported by the
	bind (wrap) a key	RSA Key Gen : W	module, stored in volatile RAM or
		Key Import : W	in non-volatile Flash in plaintext
		Zeroize : W	
RSA private binding keys	Used to unbind (unwrap) a key	Data Binding : R	Generated or imported by the
	bound by a external entity	RSA Key Gen : W	module, stored in volatile RAM or
		Zeroize : W	in non-volatile Flash in
			plaintext
HMAC Keys	Used to calculate and verify MAC	MAC/MAC Verify : R	Generated or imported by the
	codes for data	Key Gen : W	module, stored in volatile RAM or
		Key Import: W	in non-volatile Flash in plaintext
		Zeroize : W	r mon in prunteat

RNG seed	Used to seed the RNG	Key Gen : R	Generated by the module using the
		RSA Key Gen : R	non-Approved non-
		Zeroize : W	deterministic hardware RNG (entropy source) Generated by the module, stored in volatile RAM in plaintext
RNG Seed Key	Used to seed the RNG	Key Generate : R	Generated by the module using the
		RSA Key Gen : R	non-Approved non-
		Zeroize : W	deterministic hardware RNG (entropy source), stored in volatile RAM in plaintext
RSA Storage Root Key	Private Root key for the hierarchy		Generated by the module
Private Key	of keys associated with TPM	Zeroize : W	
RSA Storage	Public Root key		Generated by the
Root Key Public Key	for the hierarchy of keys associated with TPM	Zeroize : W	module
RSA Endorsement Public Key	Used to prove to the external parties that TPM is a genuine TPM	TPM Endorsement : R	Installed at the factory
	15 a genuine 11 M		

RSA Endorsement Private Key	Used to prove to the external parties that TPM is a genuine TPM. The key signs a challenge provided by an external party. Since the key is only known to the manufacturer, this proves to the external party that the TPM is	TPM Endorsement : R	Installed at the factory
UMAC	genuine.	Vou Conorato, W	Concreted by the
Authentication Key	authentication of data	MAC/MAC Verify: R	module

Table 6. Cryptographic Keys.

Note: R is defined as read access, W is defined as write access.

6. Power-On Self Tests.

The module implements a power-up integrity check using a 128-bit error detection code.

The module implements the following power-up cryptographic algorithm tests:

Cryptographic Function	Test Type
AES CTR encrypt	Known Answer Test (encrypt)
RSA sign/verify	Known Answer Test (sign/verify)
HMAC keyed hash	Known Answer Test (keyed hash)
RNG random number generation	Known Answer Test (generate random block)
SHS hash SHA-1	Known Answer Test (generate SHA1 digest)

Table 7. Self-tests.

7. Conditional Self Tests.

The module executes continuous RNG test on each execution of the FIPS 186-2 RNG.

The module executes continuous RNG test on each execution of the non-Approved hardware non-deterministic RNG (entropy source).

The module executes conditional pair-wise consistency check for RSA public-private key pairs each time an RSA key pair is generated using FIPS 186-3 key pair generation algorithm.

If any of the conditional or power-on self-tests fail, the module enters an error state where both data output and cryptographic services are disabled.

8. Crypto Officer Guidance.

To install the module in the Approved Mode of operation, the following steps must be followed:

- a) The module must be physically controlled during the installation
- b) The module must be placed on the PCB as described in the module technical specifications

9. User Guidance.

The users shall take security measures to protect tokens used to authenticate the user to the module (Note: authentication is not covered by the FIPS 140-2 Level 1 requirements).

10. Acronyms

AES	Advanced Encryption Algorithm
CPU	Central Processing Unit
EMC	Electro Magnetic Compatibility
EMI	Electro Magnetic Interference
FIPS	Federal Information Processing Standard
HMAC	Hash-based Message Authentication Code
ОТР	One Time programming Non-Volatile Memory
PCB	Printed Circuit Board
R	Read privilege
RAM	Random Access Memory
RNG	Random Number Generator
RSA	Rivest Shamir Adleman
SHS	Secure Hash Standard
SP	Special Publication
TCG	Trusted Computing Group
TPM	Trusted Platform Module
W	Write privilege