
FIPS 140-2 Non-Proprietary Security Policy: Cocoon Data Secure Objects C++ Cryptographic Module
Version 1.8

Document Version 1.7 © Cocoon Data Page 1 of 16

FIPS 140-2 Non-Proprietary Security Policy

Cocoon Data Secure Objects C++ Cryptographic Module Version
1.8

Document Version 1.7

11 March 2013

FIPS 140-2 Non-Proprietary Security Policy: Cocoon Data Secure Objects C++ Cryptographic Module
Version 1.8

Document Version 1.7 © Cocoon Data Page 2 of 16

Prepared For:

Prepared By:

Cocoon Data

Level 4

152-156 Clarence St

Sydney – NSW – 2000

www.cocoondata.com

Apex Assurance Group, LLC

530 Lytton Avenue

Ste. 200

Palo Alto, CA 94301

www.apexassurance.com

Abstract

This document provides a non-proprietary FIPS 140-2 Security Policy for the Secure Objects C++
Cryptographic Module Version 1.8.

http://www.cocoondata.com/
http://www.apexassurance.com/

FIPS 140-2 Non-Proprietary Security Policy: Cocoon Data Secure Objects C++ Cryptographic Module
Version 1.8

Document Version 1.7 © Cocoon Data Page 3 of 16

Table of Contents
1 Introduction .. 5

1.1 About FIPS 140... 5
1.2 About this Document ... 5
1.3 External Resources ... 5
1.4 Notices .. 5
1.5 Acronyms... 5

2 Cocoon Data Secure Objects C++ Cryptographic Module Version 1.8 .. 7
2.1 Solution Overview .. 7
2.2 Cryptographic Module Specification ... 7

2.2.1 Validation Level Detail ... 8
2.2.2 Approved Cryptographic Algorithms .. 8
2.2.3 Non-Approved Cryptographic Algorithms ... 8

2.3 Module Interfaces .. 9
2.4 Roles, Services, and Authentication .. 10

2.4.1 Operator Services and Descriptions ... 10
2.4.2 Operator Authentication.. 11

2.5 Physical Security .. 11
2.6 Operational Environment ... 11
2.7 Cryptographic Key Management .. 12

2.7.1 Key/Critical Security Parameter (CSP) Authorized Access and Use by Role and Service/Function 13
2.7.2 Key/CSP Storage .. 13
2.7.3 Key/CSP Zeroization... 13
2.7.4 Key Generation .. 14

2.8 Self-Tests ... 14
2.8.1 Power-On Self-Tests .. 14
2.8.2 Conditional Self-Tests .. 15
2.8.3 Critical Functions Tests .. 15

2.9 Mitigation of Other Attacks.. 15

3 Guidance and Secure Operation .. 16
3.1 Crypto Officer Guidance ... 16

3.1.1 Enabling FIPS Module within the Secure Objects Application .. 16
3.1.2 Additional Rules of Operation .. 16

3.2 User Guidance ... 16
3.2.1 General Guidance .. 16

FIPS 140-2 Non-Proprietary Security Policy: Cocoon Data Secure Objects C++ Cryptographic Module
Version 1.8

Document Version 1.7 © Cocoon Data Page 4 of 16

List of Tables

Table 1 – Acronyms and Terms ... 6

Table 2 – Validation Level by DTR Section ... 8

Table 3 – FIPS-Approved Algorithm Certificates .. 8

Table 4 – Logical Interface / Physical Interface Mapping.. 10

Table 5 – Role Descriptions ... 10

Table 6 – Module Services and Descriptions.. 11

Table 7 – Module Keys/CSPs ... 13

Table 8 – Power-On Self-Tests .. 14

List of Figures

Figure 1 – Module Boundary and Interfaces Diagram .. 9

FIPS 140-2 Non-Proprietary Security Policy: Cocoon Data Secure Objects C++ Cryptographic Module
Version 1.8

Document Version 1.7 © Cocoon Data Page 5 of 16

1 Introduction

1.1 About FIPS 140

Federal Information Processing Standards Publication 140-2 — Security Requirements for Cryptographic
Modules specifies requirements for cryptographic modules to be deployed in a Sensitive but
Unclassified environment. The National Institute of Standards and Technology (NIST) and
Communications Security Establishment of Canada (CSEC) Cryptographic Module Validation Program
(CMVP) runs the FIPS 140 program. The CMVP accredits independent testing labs to perform FIPS 140
testing; the CMVP also validates test reports for modules meeting FIPS 140 validation. Validated is the
term given to a product that is documented and tested against the FIPS 140 criteria.

More information is available on the CMVP website at
http://csrc.nist.gov/groups/STM/cmvp/index.html.

1.2 About this Document

This non-proprietary Cryptographic Module Security Policy for the Secure Objects C++ Cryptographic
Module Version 1.8 from Cocoon Data provides an overview of the product and a high-level description
of how it meets the security requirements of FIPS 140-2. This document contains details on the
module’s cryptographic keys and critical security parameters. This Security Policy concludes with
instructions and guidance on running the module in a FIPS 140-2 mode of operation.

The Cocoon Data Secure Objects C++ Cryptographic Module Version 1.8 may also be referred to as the
“module” in this document.

1.3 External Resources

The Cocoon Data website (http://www.cocoondata.com) contains information on Cocoon Data
products. The Cryptographic Module Validation Program website
(http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/1401val2013.htm) contains links to the FIPS
140-2 certificate and Cocoon Data contact information.

1.4 Notices

This document may be freely reproduced and distributed in its entirety without modification.

1.5 Acronyms

The following table defines acronyms found in this document:

http://csrc.nist.gov/groups/STM/cmvp/index.html
http://www.cocoondata.com/
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/1401val2013.htm

FIPS 140-2 Non-Proprietary Security Policy: Cocoon Data Secure Objects C++ Cryptographic Module
Version 1.8

Document Version 1.7 © Cocoon Data Page 6 of 16

Table 1 – Acronyms and Terms

Acronym Term
AES Advanced Encryption Standard
ANSI American National Standards Institute
API Application Programming Interface
CMVP Cryptographic Module Validation Program
CO Crypto Officer
CSEC Communications Security Establishment Canada
CSP Critical Security Parameter
DES Data Encryption Standard
DH Diffie-Hellman
DSA Digital Signature Algorithm
EMC Electromagnetic Compatibility
EMI Electromagnetic Interference
FCC Federal Communications Commission
FIPS Federal Information Processing Standard
GPC General Purpose Computer
GUI Graphical User Interface
HMAC (Keyed-) Hash Message Authentication Code
KAT Known Answer Test
MAC Message Authentication Code
MD Message Digest
NIST National Institute of Standards and Technology
OS Operating System
PKCS Public-Key Cryptography Standards
PRNG Pseudo Random Number Generator
PSS Probabilistic Signature Scheme
RNG Random Number Generator
RSA Rivest, Shamir, and Adleman
SHA Secure Hash Algorithm
SSL Secure Sockets Layer
TLS Transport Layer Security
USB Universal Serial Bus

FIPS 140-2 Non-Proprietary Security Policy: Cocoon Data Secure Objects C++ Cryptographic Module
Version 1.8

Document Version 1.7 © Cocoon Data Page 7 of 16

2 Cocoon Data Secure Objects C++ Cryptographic Module Version 1.8

2.1 Solution Overview

The Cocoon Data Secure Objects C++ Cryptographic Module Version 1.8 has been implemented as part
of the Cocoon Data Secure Objects solution, an encryption-based access control system for protecting
the confidentiality and integrity of electronic files. Secure Objects controls and monitors the exchange of
digital files based on recipient identity, to protect against the deliberate or unintentional release of
sensitive user data.

2.2 Cryptographic Module Specification

The module, the Secure Objects C++ Cryptographic Module Version 1.8, is a software shared library that
provides cryptographic services required by the Cocoon Data Secure Objects solution. The Module's
logical cryptographic boundary is the shared library files and their integrity check HMAC files, which are
as follows:

• libcrypto-macOS.dylib
• libcrypto-macOS.dylib.hash (cdfa5dd04b37ec9b72b90a9d0aff4b5a262755d2)

• libcrypto32-ubuntu.so
• libcrypto32-ubuntu.so.hash (84ba4d785833d29281ce3ec7dd8b2ea2ab85b7f2)

• libcrypto64-ubuntu.so
• libcrypto64-ubuntu.so.hash (f6b60bd790c48cc36243da24512d303598eadc3e)

• libcrypto32-redhat.so
• libcrypto32-redhat.so.hash (153ffe5af859fa182f90f8c72710c3a0c9316463)

• libcrypto64-redhat.so
• libcrypto64-redhat.so.hash (c31e2f2ab982364b62aab779ceddbd26f10c3288)

• WindowsFIPSx32vs10.dll
• WindowsFIPSx32vs10.dll.hash (ed8e94aff4e7f3529c193d8bd263566aebf07d23)

• WindowsFIPSx64vs10.dll
• WindowsFIPSx64vs10.dll.hash (a830035554655da14deff9e36dc096be5d688924)

• WindowsFIPSx32vs12.dll
• WindowsFIPSx32vs12.dll.hash (748007973df84b6144a1838f6c89bd2a5ca009ab)

• WindowsFIPSx64vs12.dll
• WindowsFIPSx64vs12.dll.hash (0a1739fa8e495e61ffcae65ffc0887c204e63dbc)

FIPS 140-2 Non-Proprietary Security Policy: Cocoon Data Secure Objects C++ Cryptographic Module
Version 1.8

Document Version 1.7 © Cocoon Data Page 8 of 16

The module is a multi-chip standalone embodiment installed on a General Purpose Computer. All
operations of the module occur via calls from the Cocoon Data applications and their respective internal
daemons/processes. As such there are no untrusted services calling the services of the module, as APIs
are not exposed.

2.2.1 Validation Level Detail

The following table lists the level of validation for each area in FIPS 140-2:

FIPS 140-2 Section Title Validation Level
Cryptographic Module Specification 1
Cryptographic Module Ports and Interfaces 1
Roles, Services, and Authentication 1
Finite State Model 1
Physical Security N/A
Operational Environment 1
Cryptographic Key Management 1
Electromagnetic Interference / Electromagnetic Compatibility 1
Self-Tests 1
Design Assurance 3
Mitigation of Other Attacks N/A
Overall Level 1
Table 2 – Validation Level by DTR Section

2.2.2 Approved Cryptographic Algorithms

The module’s cryptographic algorithm implementations have received the following certificate numbers
from the Cryptographic Algorithm Validation Program:

FIPS 140-2 Section Title CAVP Certificate
AES #2192
TDES #1385
SHS #1900
HMAC #1344
HMAC_DRBG: SP800-90 (hash based) #257
Table 3 – FIPS-Approved Algorithm Certificates

2.2.3 Non-Approved Cryptographic Algorithms

The module does not support any non-approved algorithms.

FIPS 140-2 Non-Proprietary Security Policy: Cocoon Data Secure Objects C++ Cryptographic Module
Version 1.8

Document Version 1.7 © Cocoon Data Page 9 of 16

2.3 Module Interfaces

The figure below shows the module’s physical and logical block diagram:

Figure 1 – Module Boundary and Interfaces Diagram

The interfaces (ports) for the physical boundary include the computer keyboard port, CDROM drive,
floppy disk, mouse, network port, parallel port, USB ports, monitor port and power plug. The module
has logical interfaces provided through the Application Programming Interface (API) that a calling
daemon can operate. The logical interfaces expose services that applications directly call, and the API
provides functions that may be called by a referencing application (see Section 2.4 – Roles, Services, and
Authentication for the list of available functions). The module distinguishes between logical interfaces
by logically separating the information according to the defined API.

The API provided by the module is mapped onto the FIPS 140- 2 logical interfaces: data input, data
output, control input, and status output. Each of the FIPS 140- 2 logical interfaces relates to the
module's callable interface, as follows:

FIPS 140-2 Interface Logical Interface Module Physical Interface
Data Input Input parameters of API function

calls
Network Interface

Data Output Output parameters of API function
calls

Network Interface

FIPS 140-2 Non-Proprietary Security Policy: Cocoon Data Secure Objects C++ Cryptographic Module
Version 1.8

Document Version 1.7 © Cocoon Data Page 10 of 16

FIPS 140-2 Interface Logical Interface Module Physical Interface
Control Input API function calls Keyboard Interface, Mouse

Interface
Status Output For FIPS mode, function calls

returning status information and
return codes provided by API
function calls.

Display Controller

Power None Power Supply
Table 4 – Logical Interface / Physical Interface Mapping

As shown in Figure 1 – Module Boundary and Interfaces Diagram and Table 6 – Module Services and
Descriptions, the output data path is provided by the data interfaces and is logically disconnected from
key management processes. No key information will be output through the data output interface when
the module zeroizes keys.

2.4 Roles, Services, and Authentication

The module supports a Crypto Officer and a User role. The module does not support a Maintenance
role. The supported role definitions are as follows:

Role Services
User Encryption, Decryption (symmetric), Random Numbers
Crypto Officer Installation and configuration of FIPS 140-2 validated mode
Table 5 – Role Descriptions

The User and Crypto-Officer roles are implicitly assumed by the entity accessing services implemented
by the Module.

2.4.1 Operator Services and Descriptions

The module supports services that are available to users in the various roles. All of the services are
described in detail in the module’s Design documentation. The following table shows the services
available to the various roles and the access to cryptographic keys and CSPs resulting from services:

Service Roles KEY / CSP Permission
Symmetric
encryption/de
cryption

User AES Key, Triple-DES Key User:
write/execute

Message
digest (SHS)

User none User:
na

Show status User none User:
na

Module
initialization

CO none CO:
na

FIPS 140-2 Non-Proprietary Security Policy: Cocoon Data Secure Objects C++ Cryptographic Module
Version 1.8

Document Version 1.7 © Cocoon Data Page 11 of 16

Service Roles KEY / CSP Permission
Self-Test CO All CSPs CO:

execute
Zeroize User All CSPs User:

write
HMAC_Drbg

Generate
random
number.

User HMAC_DRBG V

HMAC_DRBG C

User:
write/execute

HMAC USER HMAC Key for Integrity Check User:
execute

Table 6 – Module Services and Descriptions

2.4.2 Operator Authentication

As required by FIPS 140-2, there are two roles (a Crypto Officer role and User role) in the module that
operators may assume. As allowed by Level 1, the module does not support authentication to access
services. As such, there are no applicable authentication policies. Access control policies are implicitly
defined by the services available to the roles as specified in Table 6 – Module Services and Descriptions.

2.5 Physical Security

This section of requirements does not apply to this module. The module is a software-only module and
does not implement any physical security mechanisms.

2.6 Operational Environment

The module operates on a general purpose computer (GPC) running a general purpose operating system
(GPOS). For FIPS purposes, the module is running on this operating system in single user mode and does
not require any additional configuration to meet the FIPS requirements.

The module was tested on the following platforms:

• Microsoft Windows 7 32-bit with MSVC2010 redistributable running on Dell Vostro 1520 (single
user mode)

• Microsoft Windows XP 32-bit with SP3; MSVC2010 redistributable running on Dell Vostro 1520
(single user mode)

• Microsoft Windows 7 64-bit with MSVC2010 redistributable running on Dell Vostro 3500 (single
user mode)

FIPS 140-2 Non-Proprietary Security Policy: Cocoon Data Secure Objects C++ Cryptographic Module
Version 1.8

Document Version 1.7 © Cocoon Data Page 12 of 16

• Microsoft Windows 7 32-bit with MSVC2012 redistributable running on Dell Vostro 1520 (single
user mode)

• Microsoft Windows XP 32-bit with SP3; MSVC2012 redistributable running on Dell Vostro 1520
(single user mode)

• Microsoft Windows 7 64-bit with MSVC2012 redistributable running on Dell Vostro 3500 (single
user mode)

• Ubuntu 12.04 LTS 64-bit running on Dell PowerEdge 1950

• Ubuntu 12.04 LTS 64-bit on VMWare Fusion 4.1.3 on OSX running on a MacBook Pro Intel core
i7

• Ubuntu 12.04 LTS 32-bit running on Dell PowerEdge 1950

• Ubuntu 12.04 LTS 32-bit on VMWare Fusion 4.1.3 on OSX running on a MacBook Pro Intel Core
i7

• Redhat Enterprise Linux Server 6.3 64-bit running on Dell PowerEdge 1950

• Redhat Enterprise Linux Server 6.3 64-bit on VMWare Fusion 4.1.3 on OSX running on a
MacBook Pro Intel Core i7

• Redhat Enterprise Linux Server 6.3 32-bit running on Dell PowerEdge 1950

• Redhat Enterprise Linux Server 6.3 32-bit on VMWare Fusion 4.1.3 on OSX running on a
MacBook Pro Intel Core i7

• Mac OSX 10.8 running on MacBook Pro Intel Core i7

The GPC(s) used during testing met Federal Communications Commission (FCC) FCC Electromagnetic
Interference (EMI) and Electromagnetic Compatibility (EMC) requirements for business use as defined
by 47 Code of Federal Regulations, Part15, Subpart B. FIPS 140-2 validation compliance is maintained
when the module is operated on other versions of the GPOS running in single user mode, assuming that
the requirements outlined in NIST IG G.5 are met.

2.7 Cryptographic Key Management

The table below provides a complete list of Critical Security Parameters used within the module:

Keys and CSPs Storage
Locations

Storage
Method

Input
Method

Output
Method Zeroization Access

AES Key RAM Plaintext API call
parameter

None ClearSensitiveData()

power cycle
U: RWD

FIPS 140-2 Non-Proprietary Security Policy: Cocoon Data Secure Objects C++ Cryptographic Module
Version 1.8

Document Version 1.7 © Cocoon Data Page 13 of 16

Keys and CSPs Storage
Locations

Storage
Method

Input
Method

Output
Method Zeroization Access

Triple-DES Key RAM Plaintext API call
parameter

None ClearSensitiveData()

power cycle
U: RWD

HMAC Key RAM Plaintext API call
parameter

None ClearSensitiveData()

power cycle
U: RWD

HMAC_DRBG V

RAM Plaintext API call
parameter

None ClearSensitiveData()

power cycle
U: RWD

HMAC_DRBG C

RAM Plaintext API call
parameter

None ClearSensitiveData()

power cycle
U: RWD

HMACs_DRBG
Entropy Input
String

RAM Plaintext API call
parameter

None ClearSensitiveData()

power cycle
U: RWD

HMAC_DRBG
Seed Value

RAM Plaintext API call
parameter

None ClearSensitiveData()

power cycle
U: RWD

HMAC Key RAM Plaintext API call
parameter

None ClearSensitiveData()

power cycle
U: RWD

HMAC Key for
Integrity Check

RAM Plaintext API call
parameter

None uninstall U: RWD

R = Read W = Write D = Delete

Table 7 – Module Keys/CSPs

The application that uses the module is responsible for appropriate destruction and zeroization of the
key material. The library provides functions for key allocation and destruction which overwrite the
memory that is occupied by the key information with zeros before it is deallocated.

2.7.1 Key/Critical Security Parameter (CSP) Authorized Access and Use by Role and
Service/Function

The module does not provide any key generation services. Key and CSP data can be provided to the
module but there is no interface for later retrieving (regardless of Role).

2.7.2 Key/CSP Storage

Keys are provided to the Module by the calling process, and are destroyed when released by the
appropriate API function calls. The Module does not perform persistent storage of keys.

2.7.3 Key/CSP Zeroization

The memory occupied by keys is cleared by a destruction function (via the ClearSensitiveData()
call) that overwrites the memory occupied by keys with zeros, which sufficiently protects the CSPs from
compromise.

FIPS 140-2 Non-Proprietary Security Policy: Cocoon Data Secure Objects C++ Cryptographic Module
Version 1.8

Document Version 1.7 © Cocoon Data Page 14 of 16

2.7.4 Key Generation

The module does not support key generation

2.8 Self-Tests

FIPS 140-2 requires that the module perform self-tests to ensure the integrity of the module and the
correctness of the cryptographic functionality at start up. All of these tests are listed and described in
this section. In the event of a self-test error, the module will log the error and will halt. The module
must be initialized into memory and pass the self-tests to resume function.

No operator intervention is required during the running of the self-tests. Self-tests can be performed on
demand by functions provided as described in the Cryptography Design and API documents.

The following sections discuss the module’s self-tests in more detail.

2.8.1 Power-On Self-Tests

Power-on self-tests are executed automatically when the module is loaded into memory via the
FIPS_instance() method. The doModuleIntegrityCheck() function verifies the integrity of the
runtime executable using a HMAC SHA-1 digest computed at build time. If the digests match, the power-
up self-tests are then performed. If the power-up self-test is successful, FipsFactory::Instance()
sets an enumerated value testStatus to PASSED and the Module is in FIPS mode.

TYPE DETAIL
Software Integrity Check HMAC SHA-1
Known Answer Tests • AES encrypt/decrypt

• TDES encrypt/decrypt
• HMAC SHA-1
• HMAC SHA-224
• HMAC SHA-256
• HMAC SHA-384
• HMAC SHA-512
• SHA-1
• SHA-224
• SHA-256
• SHA-384
• SHA-512
• AES encrypt/decrypt Monte Carlo
• TDES encrypt/decrypt Monte Carlo
• HMAC_DRBG tests

Table 8 – Power-On Self-Tests

Input, output, and cryptographic functions cannot be performed while the Module is in a self-test or
error state because the module is single-threaded and will not return to the calling application until the

FIPS 140-2 Non-Proprietary Security Policy: Cocoon Data Secure Objects C++ Cryptographic Module
Version 1.8

Document Version 1.7 © Cocoon Data Page 15 of 16

power-up self-tests are complete. If the power-up self-tests fail, subsequent calls to the module will also
fail - thus no further cryptographic operations are possible without resetting the module.

2.8.2 Conditional Self-Tests

The module implements a continuous RNG test on the HMAC_DRBG implementation.

2.8.3 Critical Functions Tests

The module does not perform critical functions tests above and beyond power-on self-tests and
conditional self-tests, as there are no other functions that, upon failure, could lead to the disclosure of
CSPs.

2.9 Mitigation of Other Attacks

The Module does not contain additional security mechanisms beyond the requirements for FIPS 140-2
Level 1 cryptographic modules.

FIPS 140-2 Non-Proprietary Security Policy: Cocoon Data Secure Objects C++ Cryptographic Module
Version 1.8

Document Version 1.7 © Cocoon Data Page 16 of 16

3 Guidance and Secure Operation

This section describes how to configure and initialize the module for FIPS-Approved mode of operation.
When configured and initialized per this Security Policy, the module will only operate in the FIPS
Approved mode of operation.

3.1 Crypto Officer Guidance

3.1.1 Enabling FIPS Module within the Secure Objects Application

The module is included with the Secure Objects suite including Secure Envelopes and Secure Documents
and is not available for direct download. The FIPS Mode setting is configured in development when
calling Secure Objects C++ Cryptographic Module. The Secure Objects application is configured to use
the module as follows:

• The Cocoon Data development team is responsible for ensuring the source files that comprise
the Secure Objects C++ Cryptographic Module Version 1.8 are built into the Secure Objects
solution.

• The module ships in FIPS mode by default, and there is no non-FIPS mode.

3.1.2 Additional Rules of Operation

1. The writable memory areas of the Module (data and stack segments) are accessible only by the
Secure Objects application so that the operating system is in "single user" mode, i.e. only the
Secure Objects application has access to that instance of the Module.

2. The operating system is responsible for multitasking operations so that other processes cannot
access the address space of the process containing the Module.

3. The end user of the operating system is also responsible for zeroizing CSPs via wipe/secure
delete procedures. These procedures are commands via operating system or third party
applications to wipe disk space, and they augment the zeroization functions implemented within
the module.

3.2 User Guidance

3.2.1 General Guidance

The module is not distributed as a standalone library and is only used in conjunction with the Cocoon
Data solution. As such, there is no direct User Guidance.

	1 Introduction
	1.1 About FIPS 140
	1.2 About this Document
	1.3 External Resources
	1.4 Notices
	1.5 Acronyms

	2 Cocoon Data Secure Objects C++ Cryptographic Module Version 1.8
	2.1 Solution Overview
	2.2 Cryptographic Module Specification
	2.2.1 Validation Level Detail
	2.2.2 Approved Cryptographic Algorithms
	2.2.3 Non-Approved Cryptographic Algorithms

	2.3 Module Interfaces
	2.4 Roles, Services, and Authentication
	2.4.1 Operator Services and Descriptions
	2.4.2 Operator Authentication

	2.5 Physical Security
	2.6 Operational Environment
	2.7 Cryptographic Key Management
	2.7.1 Key/Critical Security Parameter (CSP) Authorized Access and Use by Role and Service/Function
	2.7.2 Key/CSP Storage
	2.7.3 Key/CSP Zeroization
	2.7.4 Key Generation

	2.8 Self-Tests
	2.8.1 Power-On Self-Tests
	2.8.2 Conditional Self-Tests
	2.8.3 Critical Functions Tests

	2.9 Mitigation of Other Attacks

	3 Guidance and Secure Operation
	3.1 Crypto Officer Guidance
	3.1.1 Enabling FIPS Module within the Secure Objects Application
	3.1.2 Additional Rules of Operation

	3.2 User Guidance
	3.2.1 General Guidance

