

Security Policy

Check Point CryptoCore version 2.0

FIPS 140-2

Level 1 Validation

Document Version 2.09

May, 2013

Table of Contents

ntroduction	
Purpose	
References	
Acronym list	3
Overview	4
Cryptographic Module	4
AES-NI Support	5
Module Ports and Interfaces	5
Roles, Services and Authentication	6
Physical Security	6
Operational Environment	6
Cryptographic Key Management	7
Self-Tests	9
Design Assurance	10
Mitigation of Other Attacks	10
Operation of the Check Point CryptoCore 2.0	10

Introduction

Purpose

This non-proprietary Cryptographic Module Security Policy for the Check Point CryptoCore 2.0, describes how the Check Point CryptoCore meets the Level 1 security requirements of FIPS 140-2. Validation testing was performed on Windows 7 and Mac OS X 10.7 and UEFI firmware. This policy document is part of FIPS 140-2 validation of the Check Point CryptoCore 2.0.

FIPS 140-2 (Federal Information Processing Standards Publication 140-2 Security Requirements for Cryptographic Modules) details the U.S. Government requirements for cryptographic modules. More information about the FIPS 140-2 standard and validation program is available on the NIST website at http://csrc.nist.gov/groups/STM/cmvp/index.html.

References

This document deals only with operations and capabilities of the Check Point CryptoCore 2.0 in the technical terms of a FIPS 140-2 cryptographic module security policy. More information is available on the Check Point CryptoCore 2.0 application from the following source:

Refer to: http://www.checkpoint.com for information on Check Point products and services as well as answers to technical or sales related questions.

Acronym list

Acronym	Definition
Triple-DES	Triple Data Encryption Standard
AES	Advanced Encryption Standard
MD5	Message Digest Algorithm 5
RSA	Rivest, Shamir, Adleman Private/Public key algorithm
SHA	Secure Hashing Algorithm
PRNG	Pseudo Random Number Generator
UEFI	Unified Extensible Firmware Interface
DRBG	Deterministic Random Bit Generator

Table 1 Acronyms

Check Point CryptoCore 2.0

Overview

The Check Point CryptoCore 2.0 (hereinafter referenced as the crypto module) provides cryptographic support for the Check Point line of products. The crypto module is used to perform cryptographic operations as well as create, manage and delete cryptographic keys.

The cryptographic services provided by the crypto module includes symmetric and asymmetric key based encryption algorithms, message digest, message authentication code, RSA encryption, signature generation and verification, and pseudo random number generation functions.

The crypto module can be used to provide multiple security functions in Check Point applications. A structured set of APIs can be called to perform these functions. The API set makes the module very flexible, and enables adding crypto functions to new applications without changing the module itself.

Utilizing the crypto module, Check Point applications can create encryption keys, which can then be used to encrypt data. The APIs provide the ability to encrypt both static data (such as hard disk blocks) as well as data streams (such as browser traffic). The crypto module also provides the ability to perform cryptographic MAC operations and Message Digest operations.

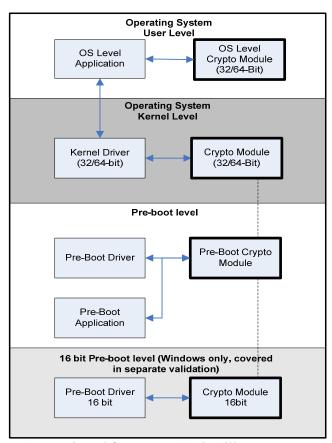


Figure 1 Interaction of Crypto module in different system modes.

Cryptographic Module

The Check Point CryptoCore 2.0 is classified as a multi-chip standalone module for FIPS 140-2 purposes. The module was tested for FIPS validation on a GPC running Microsoft Windows 7, Apple Mac OS X 10.7 or directly under UEFI configured in single user mode. For exact details on tested platforms refer to the algorithm certificates listed in Table 5. Compliance is maintained for all of the above-mentioned operating system platforms on which the binary executable is unchanged. In addition to the validated platforms, the module has been affirmed by the vendor to be operational on the platforms listed in Table 2, according to

FIPS 140-2 Implementation Guidance G.5. The CMVP makes no statement as to the correct operation of the module or the security strengths of the generated keys if the specific operational environment is not listed on the validation certificate (see Table 5).

Operating System	Processor/Platform
Microsoft Windows XP	x86 32-bit both with and without AES-NI
Microsoft Windows Vista	x86 32/64 -bit both with and without AES-NI
Microsoft Windows 8	x86 32/64-bit both with and without AES-NI
Apple Mac OSX 10.6	x86 64-bit kernel 32/64 –bit user mode both with and without AES-NI
Apple Mac OSX 10.8	x86 64-bit kernel 32/64 –bit user mode both with and without AES-NI

Table 2 Vendor affirmed platforms

The Cryptographic Module is packaged in the form of 32-bit dll/shared lib, used by all 32-bit user mode components in the system, 32-bit kernel export driver/kext used by kernel mode components, one 64-bit dll/shared library used by 64-bit OS modes, 64-bit kernel mode export driver/kext used by kernel mode in 64-bit OS, a 64-bit UEFI binary used by the EFI/UEFI Pre-boot environment. See also: Module Ports and Interfaces.

The relationship between the different modes is shown in Figure 1 (above). The 16-bit mode provides symmetric key cryptographic functions during 16 bit pre-boot operation while the other modes provide crypto functions thereafter. Note that the 16-bit module is validated as a separate module and only mentioned herein for the sake of completeness.

AES-NI Support

The 2.0 version of the module supports AES acceleration through the AES-NI instruction set. The 16-, 32- and 64-bit versions of the module running on Pre-Boot, Windows, UEFI/EFI and Mac OS X all support the AES-NI acceleration. During initialization of the module it will detect if the CPU supports AES-NI and, if it is present, the module engages the AES-NI acceleration.

Module Ports and Interfaces

The Check Point CryptoCore 2.0 is classified as a multi-chip standalone module for FIPS 140-2 purposes. As such, the module's cryptographic boundary includes the following:

- Microsoft Windows (PC) binaries: cryptocore.dll, ccore32.sys, ccore64.sys
- CheckPoint PreBoot: cryptocore.efi
- Mac OS X, CkpCryptocore.kext, cryptocore.dylib

A PC or mobile device running an operating system and interfacing with the computer, keyboard, mouse screen, floppy drive, CD-ROM drive, speaker, serial ports, parallel ports, and power plug.

The Check Point CryptoCore 2.0 provides a logical interface via an Application Programming Interface (API). The API provided by the module is mapped to the FIPS 140-2 logical interfaces: data input, data output, control input, and status output. All of these physical interfaces are separated into the logical interfaces from FIPS as described in the following table:

FIPS 140-2 Logical Interface	Module Mapping
Data Input Interface	Parameters passed to the module via the API call
Data Output Interface	Data returned by the module via the API call
Control Input Interface	Control input through the API function calls
Status Output Interface	Information returned via exceptions and calls
Power Interface	Does not provide a separate power or maintenance access interface beyond the power interface provided by the computer itself

Roles, Services and Authentication

The cryptographic module provides Crypto Officer and User roles. All the services exported by the module are common to both the roles except key zeroization. Only the Crypto-officer is allowed to perform key zeroization. Since the module is validated at security level 1, it does not provide an authentication mechanism.

Exported Services	Supported	Exported to
cryptInitSystem	X	User/CO
cryptCipherInit	X	User/CO
cryptCipherDestroy	Х	CO
cryptCipherSetParams	X	User/CO
cryptCipherSetKey	X	User/CO
cryptCipherSetIV	X	User/CO
cryptCipherGetIV	X	User/CO
cryptEncrypt	X	User/CO
cryptDecrypt	X	User/CO
cryptDigestInit	X	User/CO
cryptDigestDestroy	X	CO
cryptDigestCopy	X	User/CO
cryptDigestUpdate	X	User/CO
cryptDigestFinal	X	User/CO
cryptHmacInit	X	User/CO
cryptHmacDestroy	X	CO
cryptHmacCopy	X	User/CO
cryptHmacUpdate	x	User/CO
cryptHmacFinal	X	User/CO
cryptPrngInitEx	X	User/CO
cryptPrngDestroy	X	CO
cryptPrngAddEntropy	X	User/CO
cryptPrngReadBytesEx	X	User/CO
cryptPkInit	X	User/CO
cryptPkDestroy	X	CO
cryptPkSetKey	X	User/CO
cryptPkGetKey	X	User/CO
cryptPkGenKey	X	User/CO
cryptPkSign	X	User/CO
cryptPkVerify	X	User/CO
cryptPkEncrypt	X	User/CO
cryptPkDecrypt	X	User/CO
cryptGetFunctionList	X	User/CO
cryptXTSEncrypt cryptXTSDecrypt	X X	User/CO User/CO
cryptDeriveKey	X	User/CO
cryptAesKeyWrap	x	User/CO
cryptAesKeyUnwrap	x	User/CO
cryptGetStatusInfo	X	User/CO
cryptEnableAesCpuAcceleration	X	User/CO

Table 4 Exported Functions

Physical Security

Since the Check Point Crypto Module is implemented solely in software, the physical security section of FIPS 140-2 is not applicable.

Operational Environment

The Cryptographic module's software components are designed to be installed on the targets listed below as indicated in section 2.2 above.

Microsoft Windows

The Cryptographic module's software components are designed to be installed on an IBM-compatible PC running 32 and 64-bit versions of Microsoft Windows 7.

Apple Mac OS X

The Cryptographic module's software components are designed to be installed on an Apple Mac computer running 32 and 64-bit versions of Mac OS X 10.6, 10.7 and 10.8.

UEFI/EFI

The Cryptographic module's software components are designed to be usde on an IBM-compatible PC or Apple computer running 64-bit EFI or UEFI pre-boot environment. An operating system is not required for the UEFI/EFI module.

Each software components of the module will implement an approved message authentication code, used to verify the integrity of software component during the power-up self-test (see section on self-test below). While loaded in the memory, the respective target OS will protect all unauthorized access to the Cryptographic module's address memory and process space.

Cryptographic Key Management

The Check Point CryptoCore 2.0 implements the following algorithms.

The FIPS approved column specifies whether the algorithm is available in the FIPS-mode (non-approved algorithms are not to be used, see Operation of the Check Point CryptoCore 2.0 for more information).

Algorithm Type	Algorithm, Modes and Key length	Supported	FIPS Approved	Algorithm certificate #
Symmetric Key	AES - ECB, CBC, XTS - 128, 192, 256	Х	Yes	2182
	DES - ECB, CBC - 64	X	No	
	Triple-DES – ECB, CBC – 168 Blowfish ECB, CBC - 56 – 448	X X	Yes No	1382
	CAST-128, 256	X	No	
Message Digest	MD5 (128)	X	No	
	SHA-1 (160) SHA-2 (224, 256, 384, 512)	X X	Yes Yes	1891 1891
	0117-2 (224, 230, 304, 312)	X	103	1051
HMAC	SHA-1 (160)	X	Yes	1336
	SHA-2 (224, 256, 384, 512)	X	Yes	1336
Asymmetric Key	RSA (less than 1024 bits) key wrapping	Х	No	
	RSA (less than 1024 bits) PKCS#1 sign/verify	Х	No	
	RŠA (1024, 1536, 2048, 3072, 4096) key wrapping	X	No, but allowed in FIPS mode	
	RSA (1024, 1536, 2048, 3072, 4096) PKCS#1 sign/verify	Х	Yes	1125
Random number generation	X9.31 PRNG	X	Yes	1104
generation	SP800-90 DRBG	Х	Yes	255
Key derivation	PKCS#5	Х	No, but allowed in FIPS mode	

Key Wrap	NIST AES Key Wrap	Χ	No, but	
			allowed in	
			FIPS mode	

Table 5 Algorithms list

The following table provides a list of keys and key sizes that can be generated and/or used with the module. Keys are generated or inserted, i.e. provided as input to the data input interface of the service (API), as specified in the API listing. See Table 7 for details of how the critical security components (CSP) are inserted into, or generated by, the module.

Key Name	Created	Size(s) in bits	Purpose
AES_key	Inserted	128, 192, 256,	Encryption, Decryption
Triple-DES_key	Inserted	192 (168)	Encryption, Decryption
		1024, 1536, 2048, 3072,	Key transport Decryption and
RSA_Private_key	Inserted	4096 mod size	Signing
		1024, 1536, 2048, 3072,	Key transport Encryption and
RSA_Public_key	Inserted	4096 mod size	Verification,
HMAC_SHA1_key	Inserted	160	HMAC creation
HMAC_SHA224_key	Inserted	224	HMAC creation
HMAC_SHA256_key	Inserted	256	HMAC creation
HMAC_SHA384_key	Inserted	384	HMAC creation
HMAC_SHA512_key	Inserted	512	HMAC creation
Triple-DES_MAC_MIT_key	Hard-coded	192 (168)	Module Integrity Testing
PRNG_key1 (AES Key)	Inserted	256	X9.31 PRNG
DRBG key (AES Key)	Inserted	256	CTR DRBG AES Key
DRBG seed	Inserted	Dynamic	CTR DRBG Seed data
DRBG internal state (V value)	Generated	128	CTR DRBG Internal state

Table 6 List of Keys/CSPs

Туре	Algorithms	Service	CSP	Inserted/	Access Type
				Generated	
Initialization Symmetric Cipher	N/A	cryptInitSystem	N/A	N/A	N/A
	AES, Triple-DES	cryptCipherInit cryptCipherDestroy cryptCipherSetParams cryptCipherSetKey cryptCipherSetIV cryptCipherGetIV cryptEncrypt cryptDecrypt cryptXTSEncrypt cryptXTSDecrypt	Secret Key Secret Key Secret Key Secret Key N/A N/A Secret Key Secret Key Secret Key Secret Key	Inserted Inserted Inserted Inserted N/A N/A Inserted Inserted Inserted Inserted Inserted	Read Write Read Read N/A N/A Read Read Read Read
Message Digest		71	,		
	SHA-1, SHA-2	cryptDigestInit cryptDigestDestroy cryptDigestCopy cryptDigestUpdate cryptDigestFinal	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A
Message Authentication		o.yp.b.igoon mai			. 4,7 (
	НМАС	cryptHmacInit cryptHmacDestroy cryptHmacCopy cryptHmacUpdate cryptHmacFinal	Secret Key Secret Key Secret Key Secret Key Secret Key	Inserted Inserted Inserted Inserted Inserted	Read Write Read/Write Read Read/Write
Deterministic Random number generator					
	SP800-90 CTR,	cryptPrngInitEx	Internal	Generated	Read/Write

•					
	X9.31		State/Entropy		
			Input/Nonce		
		cryptPrngDestroy	Internal State	Inserted	Write
		cryptPrngAddEntropy	Internal	Generated	Read/Write
		,, ,	State/Entropy		
			Input		
		cryptPrngReadBytesEx	Internal	Generated	Read/Write
		crypti mgrteadbytesEx	State/Entropy	Generated	rtead/vviite
A			Input		
Asymmetric					
Encryption					
	RSA	cryptPkInit	N/A	N/A	N/A
		cryptPkDestroy	Private Key	Inserted	Write
		cryptPkSetKey	Private Key	Inserted	Read
		cryptPkGetKey	Private Key	Inserted	Read
		cryptPkGenKey	Private Key	Inserted	Write
		cryptPkSign	Private Key	Inserted	Read
		cryptPkVerify	N/A	N/A	N/A
		cryptPkEncrypt	N/A	N/A	N/A
		cryptPkDecrypt	Private Key	Inserted	Read
Non FIPS		Стуріг кірестурі	r iivale Ney	inscrieu	Read
Validated					
Services					
Retrieve		cryptGetFunctionList	N/A	N/A	N/A
function					
pointers					
PKCS#5 key		cryptDeriveKey	N/A	N/A	N/A
derivation					
NIST AES key		cryptAesKeyWrap	N/A	N/A	N/A
wrap					
NIST AES key		cryptAesKeyUnwrap	N/A	N/A	N/A
unwrap		· // · · · · · · · / · · · · · · · · ·			
Get module info		cryptGetStatusInfo	N/A	N/A	N/A
Disable/Enable		cryptEnableAesCpuAcceleration	N/A	N/A	N/A
AES-NI		CryptEriableAesOpuAcceleration	IN/A	IN/A	IN/A
AES-IVI					

Table 7 Key/CSP Access

When keys are set for deletion, the key is zeroized by overwriting the keys to ensure it cannot be retrieved. Zeroization is done by calling the crypt*Destroy() set of services. Sensitive intermediate data is zeroized by the module itself.

Self-Tests

The Check Point CryptoCore 2.0 performs several power-up self-tests including known answer tests for the FIPS Approved algorithms listed in the table below.

The crypto module also performs a self-test integrity check using TRIPLE-DES-MAC with a fixed key to verify the integrity of the module.

Algorithm	Power-up self-test	Conditional self test
AES KAT	Yes (encrypt/decrypt)	N/A
Triple-DES KAT	Yes (encrypt/decrypt)	N/A
SHA-1 KAT	Yes	N/A
SHA-256 KAT	Yes	N/A
SHA-384 KAT	Yes	N/A
SHA-512 KAT	Yes	N/A
HMAC-SHA-1 KAT	Yes	N/A
HMAC-SHA-224 KAT	Yes	N/A
HMAC-SHA-256 KAT	Yes	N/A
HMAC-SHA-384 KAT	Yes	N/A
HMAC-SHA-512 KAT	Yes	N/A
RSA	Yes	Yes
PRNG	Yes	Yes
DRBG	Yes	Yes

Table 8 List of Self tests

The crypto module performs two conditional tests: continuous tests on both the PRNG and the DRBG each time it is used to generate random data, and a pair-wise consistency test each time the module generates RSA key pairs.

Design Assurance

Check Point maintains versioning for all source code and associated documentation through CVS versioning handling system.

Mitigation of Other Attacks

The Check Point CryptoCore 2.0 does not employ security mechanisms to mitigate specific attacks.

Operation of the Check Point CryptoCore 2.0

The Check Point CryptoCore 2.0 contains both FIPS-approved and non-FIPS-approved algorithms. In FIPS mode only Approved algorithms must be used.

To exemplify what we mean by FIPS mode vs. non-FIPS mode we provide the following example: If Triple-DES is being used to encrypt plaintext data, then the module is operating in FIPS-mode, but if the Blowfish algorithm was being used, it would not be in FIPS-mode.

While RSA encryption and decryption is not an approved FIPS algorithm it may be used in a FIPS approved mode as part of a key transport mechanism; however, when transporting keys, the operator must use an RSA keypair with a minimum modulus size of 1024-bits to comply with CMVP requirements.

The Check Point CryptoCore 2.0 is designed for installation and use on a computer configured in single user mode, and is not designed for use on systems where multiple, concurrent users are active.

In order to maximize the entropy provided to the approved PRNG the operator must ensure that the seed and the seed key have different values.

RSA (key wrapping; key establishment methodology provides between 80 and 150 bits of encryption strength; non-compliant less than 80-bits of encryption strength).

AES (Cert. #2182, key wrapping; key establishment methodology provides between 128 and 256 bits of encryption strength).