

Network Security Services (NSS)

Cryptographic Module Version
3.12.4

FIPS 140-2 Security Policy

Level 1 Validation

Wind River Systems, Inc.

Version 1.2

Last Update: 2010-12-13

Table of Contents
1 Introduction.. 6

1.1 Purpose... 6

1.2 Audience... 6

1.3 Reference ... 6

2 Cryptographic Module Specification (140-2 Section 4.1) ... 8

2.1 Description of Module... 8

2.2 Platform List ... 8

2.3 Modes of Operation .. 8

2.4 Description of FIPS Approved Mode.. 9

2.4.1 Non-NIST Recommended Elliptic Curve... 11

2.5 Cryptographic Module Boundary .. 11

2.5.1 Physical Cryptographic Boundary.. 12

2.5.2 Logical Cryptographic Boundary ... 13

3 Cryptographic Module Ports and Interfaces (140-2 Section 4.2) .. 15

3.1 Physical Interface ... 15

3.2 Logical Interfaces ... 15

3.2.1 PKCS #11 (Cryptoki) API ... 15

3.2.2 Data Output during Self test ... 16

4 Roles, Services, and Authentication (140-2 Section 4.3).. 17

4.1 Roles... 17

4.2 Specification of Maintenance Role.. 17

4.3 Services .. 17

4.3.1 Approved Services .. 17

4.4 Operator Authentication ... 23

4.4.1 Role-Based Authentication .. 23

4.4.2 Clearing of Previous Authentications on Power Off ... 23

4.4.3 Protection of Authentication Data ... 23

4.4.4 Initialization of Authentication Mechanism.. 23

4.4.5 Change of Authentication Data ... 24

4.4.6 Strength of Authentication Mechanism ... 24

4.4.7 Concurrent Operators.. 24

5 Access Control Policy ... 25

5.1 Cryptographic Keys and CSPs... 25

6 Finite State Model .. 26

7 Physical Security (140-2 Section 4.5)... 31

8 Operational Environment (140-2 Section 4.6).. 32

8.1 Applicability .. 32

8.2 Solution .. 32

8.2.1 Single Operator mode of Operation... 32

8.2.2 Configuration of Discretionary Access Control .. 32

8.2.3 Software Integrity Test.. 32

9 Cryptographic Key Management (140-2 Section 4.7) .. 33

9.1 Key/CSP Storage... 33

9.2 Key and CSP List... 33

9.3 Key/CSP Generation.. 33

9.4 Key/CSP Establishment... 34

9.5 Key/CSP Entry and Output .. 34

9.6 Key/CSP Zeroization ... 34

9.7 Random Number Generation .. 34

10 Self-Tests (140-2 Section 4.9) .. 35

10.1 Power-Up Tests (140-2 Section 4.9.1)... 35

10.1.1 Cryptographic Algorithm Test ... 35

10.1.2 Software/Firmware Integrity Test .. 36

10.2 Conditional Tests (140-2 Section 4.9.2).. 36

10.2.1 Continuous Random Number Generator Test.. 36

10.2.2 Pair-wise Consistency Test .. 36

10.2.3 Critical Function Test... 36

11 Design Assurance (140-2 Section 4.10) ... 37

11.1 Configuration management.. 37

11.2 Delivery and Operation... 37

11.2.1 Security Rules ... 37

11.3 Development .. 38

11.4 Guidance Documents ... 38

12 Mitigation of Other Attacks .. 39

13 Electromagnetic Interference/Electromagnetic Compatibility (EMI/EMC)........................... 40

14 Sample Cryptographic Module Initialization Code.. 41

Wind River Systems Inc. Version 1.2 Page 4 of 43

List of Tables
Table 1 Security Level... 8

Table 2 Platforms .. 8

Table 3 FIPS approved cryptographic algorithms with certificate numbers 9

Table 4 Non-approved cryptographic functions .. 10

Table 5 Asymmetric Establishment techniques allowed in a FIPS approved mode 10

Table 6 Non-NIST Recommended Curves.. 11

Table 7 Roles... 17

Table 8 Approved Services.. 18

Table 9 States ... 28

Table 10 Transitions.. 29

Table 11 Key Storage .. 33

Table 12 Cryptographic Algorithm Tests (ref: fipstest.c, PKCS #11 FIPS Power-Up Self Test). 35

Table 13 Mitigation of Attacks... 39

Wind River Systems Inc. Version 1.2 Page 5 of 43

Revision history
Version Change date Author(s) Changes to previous version

1.0 2010-07-01 atsec First version

1.1 2010-11-16 atsec Addressed CMVP comments

1.2 2010-12-13 atsec Addressed CMVP comments

Wind River Systems Inc. Version 1.2 Page 6 of 43

1 Introduction
This document is the nonproprietary FIPS 140-2 security policy for the NSS Cryptographic Module
to meet FIPS 140-2 level 1 requirements. This Security Policy details the secure operation of the
NSS Cryptographic Library as required in Federal information Processing Standards Publication
140-2 (FIPS 140-2) as published by the National Institute of Standards and Technology (NIST) of
the United States Department of Commerce.

1.1 Purpose
This security policy describes the services provided by the NSS Library cryptographic module. It
provides precise specification of cryptographic security, the cryptographic module user
(organization or individual operator), and the capabilities, protections, and access rights they will
have when using the cryptographic module. This document also provides information about the
delivery of the module and the steps required to bring it in an Approved mode of operation.

1.2 Audience
This document is required as a part of the FIPS 140-2 validation process. It describes the NSS
Cryptographic Module in relation to FIPS 140-2. It is intended for security officers, developers,
system administrators, and end-users.

1.3 Reference
The software module this security policy describes is a port to new platforms of the module
previously certified as #1279 - The Network Security Services (NSS) Cryptographic Module (Extend
ECC) Version 3.12.4, FIPS 140-2 Non- Proprietary Security Policy (validation number 1279)
developed by Sun Microsystems Inc, Red Hat Inc and Mozilla Foundation Inc. The following prior
NSS module specification documentation and publications are also relevant to this module:

[CMFP] C. Percival, "Cache Missing for Fun and Profit,"
http://www.daemonology.net/papers/htt.pdf

[FIPS_140] Federal Information Processing Standards Publication, “FIPS PUB 140-2 Security
Requirements for Cryptographic Modules”, 2002.

[FIPS_CKM] Mozila wiki, Section 7: Cryptographic Key Management

[FIPS_OE] Mozilla wiki, FIPS Operational Environment

[FIPS_FSM] Mozilla wiki, Section 4: finite Sate Model

[FIPS_MS] Mozilla wiki, FIPS Module Specification

[FIPS_PUST] Mozilla wiki, Power-Up Self-Tests

[FIPS_RS] Mozilla wiki, FIPS Roles and Services

[IG] NIST, “Implementation Guidance for FIPS PUB 140-2 and the Cryptographic Module Validation
Program”, 2010.

[NSS_CM3.12.4] Source code of NSS Cryptographic Module provided by Wind River Systems Inc.

[PKCS11] RSA Laboratories, “PKCS #11 v2.20: Cryptographic Token Interface Standard”, 2004.
(http://www.rsasecurity.com/rsalabs/node.asp?id=2133)

[PCCRS] N. Ferguson and B. Schneier, Practical Cryptography, Sec. 16.1.4 "Checking RSA
Signatures", p. 286, Wiley Publishing, Inc., 2003.

[RTAP] D. Boneh and D. Brumley, "Remote Timing Attacks are Practical,"
http://crypto.stanford.edu/~dabo/abstracts/ssl-timing.html

[SP_1279] Sun Microsystems Inc, Red Hat Inc, Mozilla Foundation Inc, “Network Security Services
(NSS) Cryptographic Module (Extend ECC) Version 3.12.4, FIPS 140-2 Non-Proprietary Security
Policy Level 2 Validation”, 2010.

Wind River Systems Inc. Version 1.2 Page 7 of 43

[SP800-57P1] NIST Special Publication 800-57, “Recommendation for Key Management – Part 1:
General (Revised)”, March 2007

[TAIDHRD] P. Kocher, "Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other
Systems," CRYPTO '96, Lecture Notes In Computer Science, Vol. 1109, pp. 104-113, Springer-
Verlag, 1996. (http://www.cryptography.com/timingattack/)

Wind River Systems Inc. Version 1.2 Page 8 of 43

2 Cryptographic Module Specification (140-2 Section
4.1)

The following sections describe the cryptographic module specifications.

2.1 Description of Module
The NSS cryptographic module is an open-source, software only, general-purpose cryptographic
library available for free under the Mozilla Public License, the GNU General Public License, and the
GNU Lesser General Public License. The NSS cryptographic module consists of APIs based on the
industry standard PKCS #11 version 2.20 [PKCS11]. The following table shows the overview of the
security level for each of the eleven sections of validation.

Table 1 Security Level

Security Component Security Level

Cryptographic Module Specification 1

Cryptographic Module Ports and Interfaces 1

Roles, Services and Authentication 2

Finite State Model 1

Physical Security N/A

Operational Environment 1

Cryptographic Key Management 1

EMI/EMC 1

Self Tests 1

Design Assurance 1

Mitigation of Other Attacks 1

2.2 Platform List
The NSS cryptographic module has been tested on the following configuration:

⚫ Wind River Linux Secure 1.0

The module has been tested on the following platforms:

Table 2 Platforms

Model Operating System and
Version

x86_64 Nehalem Xeon 5500 Wind River Linux Secure 1.0

x86_64 Pentium core2 duo Wind River Linux Secure 1.0

2.3 Modes of Operation
The NSS cryptographic module operates in two modes of operations: a FIPS approved mode and a
non-FIPS approved mode. If the NSS cryptographic module is initialized by calling the standard
PKCS #11 function C_GetFunctionList and the API functions are called via the function pointers in
that list, then the application selects the non-FIPS approved mode by default. In non-FIPS mode,
the non-approved API function NSC_Initilize initializes the PKCS #11 library and NSC_Finalize
indicates that an application is done with the PKCS #11 library.

Wind River Systems Inc. Version 1.2 Page 9 of 43

In order to operate in the FIPS approved mode, the application must follow the security rules listed
in Section 11.2.1 and initialize the module properly. The application must call the API functions via
an alternative set of function pointers - see Section 11.2.1 for details.

2.4 Description of FIPS Approved Mode
In the FIPS approved mode, the module will support the following FIPS approved security function:

Table 3 FIPS approved cryptographic algorithms with certificate numbers

Cryptographic

Algorithm

Validation
Certificate#

Usage Keys/CSPs

Triple-DES

(SP 800-67,
Appendix E OF
SP 800-38A)

949 TECB(e/d; KO 1,2); TCBC(e/d;
KO 1,2)

Secret Key

AES

(FIPS 197, SP
800-38A)

1374 ECB(e/d; 128,192,256);
CBC(e/d; 128,192,256)

Secret Key

DSA

(FIPS 186-2
with Change
Notice 1)

450 PQG(gen) MOD(1024);

PQG(ver) MOD(1024);

KEYGEN(Y) MOD(1024);

SIG(gen) MOD(1024);

SIG(ver) MOD(1024);

Private and public
key

RSA

(PKCS#1 v2.1)

673 ALG[RSASSA-PKCS1_V1_5];

SIG(gen); SIG(ver); 1024 , 1536
,

2048 , 3072 , 4096 , SHS: SHA-
1 ,

SHA-256 , SHA-384 , SHA-512

Private and public
key

ECDSA

(FIPS 186-2
with Change
Notice 1)

174 PKG: CURVES(P-256 P-384 P-
521)

PKV: CURVES(P-256 P-384 P-
521)

SIG(gen): CURVES(P-256 P-384
P-521)

SIG(ver): CURVES(P-256 P-384
P-521)

Private and public
key

SHS

(FIPS 180-3)

1256 SHA-1 (BYTE-only)

SHA-256 (BYTE-only)

SHA-384 (BYTE-only)

SHA-512 (BYTE-only)

N/A

HMAC

(FIPS 198)

807 HMAC-SHA1 (Key Sizes Ranges

Tested: KS<BS KS=BS KS>BS)

HMAC-SHA256 (Key Size

Ranges Tested: KS<BS KS=BS

KS>BS)

HMAC-SHA348 (Key Size

Ranges Tested: KS<BS KS=BS

Secret key

Wind River Systems Inc. Version 1.2 Page 10 of 43

KS>BS)

HMAC-SHA512 (Key Size

Ranges Tested: KS<BS KS=BS

KS>BS)

DRBG

(NIST SP 800-
90)

49 [Hash_DRBG: SHA-256] Seed

The module will support the following non-approved cryptographic functions:

Table 4 Non-approved cryptographic functions

Algorithm Validation Certificate Usage Keys/CSPs

MD5 N/A Hashing N/A

MD2 N/A Hashing N/A

RC2 N/A Encryption and Decryption Symmetric key

RSA N/A Encryption and Decryption for
key wrapping

Asymmetric keys

RC4 N/A Encryption and Decryption Symmetric key

DES N/A Encryption and Decryption Symmetric key

SEED N/A Encryption and Decryption Symmetric key

CAMELLIA N/A Encryption and Decryption Symmetric key

ECDSA N/A ANSI X9.62-1998 binary, SEC
2 prime, SEC 2 binary curves -
see Section 2.4.1 for a
complete list of the non-NIST
approved curves

Asymmetric keys

Warning: Users should not use these non-approved cryptographic functions in the FIPS approved
mode of operation.

The NSS cryptographic module uses the following key establishment techniques in the FIPS
approved mode of operation:

Table 5 Asymmetric Establishment techniques allowed in a FIPS approved mode

Algorithm Key size Strength of mechanism/ algorithm [bits
of security]

Diffie-Hellman (key
agreement)

public key of sizes 1024-
2236 bits

see caveat below

ECDH (key agreement) elliptic curve key sizes of
163-571 bits

see caveat below

RSA (PKCS #1, key
wrapping)

RSA key sizes of 1024-8192
bits

see caveat below

Note: Refer to Section 5.6.1 of [SP800-57P1] for information regarding the strengths of security of
the asymmetric key establishment techniques.

CAVEATS:

Wind River Systems Inc. Version 1.2 Page 11 of 43

Since the NSS cryptographic module allows a key establishment method to establish a
cryptographic key that is stronger than the key establishment method, the following warnings are
required by Section 7.5 of the implementation guidelines of [IG]:

 Diffie-Hellman (key agreement, key establishment methodology provides between 80 bits and
112 bits of encryption strength)

 ECDH (key agreement, key establishment methodology provides between 80 bits and 256 bits
of encryption strength)

 RSA (PKCS #1, key wrapping, key establishment methodology provides between 80 bits and
192 bits of encryption strength)

 MD5 for use in TLS only.

2.4.1 Non-NIST Recommended Elliptic Curve
The Extend ECC version of NSS cryptographic module implements the NIST recommended as well
as non-NIST recommended curves.

Table 6 Non-NIST Recommended Curves

Curve Family Curve Name

ANSI X9.62-1998 binary curves c2pnb163v1, c2pnb163v2, c2pnb163v3, c2tnb191v1,
c2tnb191v2, c2tnb191v3, c2tnb239v1, c2tnb239v2,
c2tnb239v3,c2tnb359v1, and c2tnb431r1

SEC 2 prime curves secp160k1, secp160r1, secp160r2, secp192k1, secp224k1, and
secp256k1

SEC 2 binary curves sect163r1, sect193r1, sect193r2, and sect239k1

Although Section 1.6 of FIPS 140-2 Implementation Guidance permits the use of non-NIST
recommended curves in the FIPS-Approved mode, we recommend that these curves should not be
used in the FIPS approved mode of operation.

The following table lists non-NIST recommended curves implemented by the Extend ECC version of
the NSS cryptographic module, which are not to be used in the FIPS approved mode.

2.5 Cryptographic Module Boundary
The physical module boundary is a surface of the case of the platform. The logical module
boundary is depicted in the software block diagram.

Wind River Systems Inc. Version 1.2 Page 12 of 43

2.5.1 Physical Cryptographic Boundary

Figure 1 Physical Cryptographic boundary diagram

For figure 1, the labels 1, 2, 3, and 4 correspond to Data In, Data Out, Control In, and Status Out
dataflows, respectively.

(1,2) (3) (3) (2,4)(1,2,4)

(2,4) (1,2,3,4)

(1,2,3,4)

Wind River Systems Inc. Version 1.2 Page 13 of 43

2.5.2 Logical Cryptographic Boundary

Figure 2 Logical Cryptographic boundary diagram

The arrows in Figure 2 depict the flow of information throughout the module. Since the interfaces
between the module and the external operating environment, and the interfaces between the
internal components of the module are all programmatic interfaces, the control, data, and status
inputs and outputs flow closely in parallel. This is the case since each function implemented in the
module has input and output parameters that pass control, data, and status information through
the API interfaces.

Wind River Systems Inc. Version 1.2 Page 14 of 43

The NSS cryptographic module requires the Netscape Portable Runtime (NSPR) libraries. NSPR
provides a cross-platform API for non-GUI operating system facilities, such as threads, thread
synchronization, normal file and network I/O, interval timing and calendar time, atomic operations,
and shared library linking. NSPR also provides utility functions for strings, hash tables, and
memory pools.

NSPR consists of the following shared libraries/DLLs:

 libplc4.so

 libplds4.so

 libnspr4.so

NSPR is outside the cryptographic boundary because none of the NSPR functions are security-
relevant.

Wind River Systems Inc. Version 1.2 Page 15 of 43

3 Cryptographic Module Ports and Interfaces (140-2
Section 4.2)

The NSS Cryptographic module is a software implementation only. This means it does not include
any hardware or firmware components. All the input to the module is processed via function
arguments. All the output is returned to the caller either as return codes or as updated memory
objects pointed to by some of the arguments.

3.1 Physical Interface
The physical interfaces of the NSS cryptographic module are the physical ports, physical covers,
doors or openings, manual controls, and physical status indicators of the general purpose
computer it runs on.

3.2 Logical Interfaces
The logical interfaces use library functions which exchange the encrypted data, keys, and all
control information through calls. The module uses different input and output function arguments
to differentiate between data input, data output, control input and status output. Similarly, it uses
different buffers for input and output data. The module performs zeroization of the input buffer
that contains security related information.

The NSS cryptographic module includes the following logical interfaces:

⚫ Data input interface: Password, cryptographic keys (encrypted or plaintext), initialization
vectors, plaintext data, cipher text, and signed data supplied to and processed by a
cryptographic module is via function input argument.

⚫ Data output interface: Cryptographic keys (encrypted or plaintext), initialization vectors,
plaintext data, cipher text, and digital signatures received via function output argument from
the module.

⚫ Control input interface: The control interfaces consist of control data such as algorithms,
module settings, commands specified by input arguments, and function calls to control the
operation of the module.

⚫ Status output interface: This interface indicates the status of the module such as function
return codes, error codes, or output arguments.

3.2.1 PKCS #11 (Cryptoki) API
PKCS# 11 (Cryptoki) API is one of the logical interfaces of the NSS cryptographic module that
provides access to the module. The module has three PKCS # 11 tokens. The FIPS PKCS # 11
token allows applications using the NSS cryptographic module to operate in a strictly FIPS mode.
Functions of FIPS PKCS# 11 API are listed in Table 8. The other two tokens implement the non-FIPS
approved mode of operation.

Data Output in Error State

All data via the data output interface is restricted when the NSS cryptographic module is in the
error state. The error state is tracked by the Boolean state variable sftk_fatalError. All the PKCS
11 function that output data via the data output interface use this state variable and, if it is true,
return the CKR_DEVICE_ERROR error code.

In the error state, the functions which are responsible for restart, shutdown, and re-initialization of
the module or output status information can be invoked. These functions are as follows:

⚫ FC_GetFunctionList

⚫ FC_Initilize

⚫ FC_Finalize

⚫ FC_GetSlotList

Wind River Systems Inc. Version 1.2 Page 16 of 43

⚫ FC_GetSlotInfo

⚫ FC_GetTokenInfo

⚫ FC_InitToken

⚫ FC_CloseSession

⚫ FC_CloseAllSessions

⚫ FC_WaitForSlotEvent

⚫ FC_GetInfo

Descriptions of above listed functions are provided in Table 8.

3.2.2 Data Output during Self test
All data via the data output interface is suppressed when FC_Initialize function of the NSS
cryptographic module is performing self-tests.

Wind River Systems Inc. Version 1.2 Page 17 of 43

4 Roles, Services, and Authentication (140-2 Section 4.3)
The following sections describe the authorized roles, services associated with the NSS module and
the authentication policy.

4.1 Roles
The NSS cryptographic module supports the two authorized roles for operators i.e. NSS user and a
Crypto Officer. This security policy introduces a new implicit role called “Everyone” and it is
responsible for all the public services specified in Section 4.3.1. Please note that this role is not
defined in [FIPS-RS].

Table 7 Roles

Role Responsibilities and Services (see list provided in Section 4.2)

NSS User Utilizes secure services

Provides access to all cryptographic and general- purpose services (except
installation of module)

Provides access to all keys stored in the private key database

Retrieval, updating, and deletion of keys from the private key database

Crypto Officer Installation of module

Control the access before and after the installation

Management of physical access to the computer, execution of NSS
cryptographic module code

Management of security facilities provided by the operating system

Everyone

(not an authorized
role for operators)

Responsible for Public Services such as module initialization

Random number generation

Parallel function management

The NSS cryptographic module uses a role-based approach for accessing services – by
authenticating to the module, an operator assumes a role and gains access to the services
accessible by that role. Please refer to section 4.4 for information on role-based operator
authentication.

4.2 Specification of Maintenance Role
The NSS cryptographic module does not have a maintenance role. Hence, this section is not
applicable.

4.3 Services
The following section describes the approved services with respect to the applicable FIPS 140-2
requirements.

4.3.1 Approved Services
The NSS Cryptographic module consists of the following types of services:

⚫ Public Services: The public services do not require user authentication and/or access to CSPs.
Message digesting services are public only when CSPs are not accessed. These services are
mapped to the role “Everyone”.

⚫ Private Services: The private services require user authentication as these services access
CSPs (for example, FC_GenerateKey, FC_GenerateKeyPair)

Wind River Systems Inc. Version 1.2 Page 18 of 43

See Table 8 for specification of the services. It contains each service as an API function, associated
role, service type, and type of access to the cryptographic keys and Critical Security Parameters
(CSPs). CSPs contain security related information (for example secret and private cryptographic
keys, and authentication data such as passwords and PINs) whose disclosure or modification can
compromise the security of NSS cryptographic module.

The access types are denoted as follows:

⚫ ‘R’ stands for Read

⚫ ‘W’ stands for Write

⚫ ‘Z’ stands for Zeroize

Table 8 Approved Services

Service

Category

Role Function Name Description CSPs Access
type

FIPS 140-2
specific

Everyone FC_GetFunctionList In FIPS approved
mode, it returns the
list of function
pointers

none -

Everyone FC_InitToken Initializes or
reinitializes a token

password and

all keys

Z Module

Initialization

Crypto
Officer

FC_InitPIN Initializes the user's
password (sets the
user's initial
password)

password W

Everyone FC_Initialize Initializes the
module library for
the FIPS Approved
mode of operation.
This function
provides the power-
up self-test service.

none -

Everyone FC_Finalize Finalizes (shuts
down) the module
library

all keys Z

General

Purpose

Everyone FC_GetInfo Obtains general
information about
the module library

none -

Everyone FC_GetSlotList Obtains a list of
slots in the system

none -

Everyone FC_GetSlotInfo Obtains information
about a particular
slot

none -

Everyone FC_GetTokenInfo Obtains information
about the token.
This function
provides the Show
Status service.

none -

Slot and Token
Management

Everyone FC_WaitForSlotEvent This function is not
supported by the
NSS cryptographic
module.

none -

Wind River Systems Inc. Version 1.2 Page 19 of 43

Service

Category

Role Function Name Description CSPs Access
type

Everyone FC_GetMechanismList Obtains a list of
mechanisms
(cryptographic
algorithms)
supported by a
token

none -

Everyone FC_GetMechanismInfo Obtains information
about a particular
mechanism

none -

 NSS User FC_SetPIN Changes the user's
password

password RW

Everyone FC_OpenSession Opens a connection
(session) between
an application and
a particular token

none -

 FC_CloseSession Closes a session keys of the
session

Z

Everyone FC_CloseAllSessions closes all sessions
with a token

all keys Z

Everyone FC_GetSessionInfo Obtains information
about the session.
This function
provides the Show
Status service.

none -

Everyone FC_GetOperationState Saves the state of
the cryptographic
operation in a
session. This
function is only
implemented for
message digest
operations.

none -

Everyone FC_SetOperationState Restores the state
of the
cryptographic
operation in a
session. This
function is only
implemented for
message digest
operations.

none -

Everyone FC_Login Logs into a token password R

Session
Management

NSS

User

FC_Logout Logs out from a
token

none -

NSS

User

FC_CreateObject Creates an object original key R

NSS

User

FC_CopyObject Creates a copy of
an object

new key W

Object
Management

NSS

User

FC_DestroyObject Destroys an object key Z

Wind River Systems Inc. Version 1.2 Page 20 of 43

Service

Category

Role Function Name Description CSPs Access
type

NSS

User

FC_GetObjectSize Obtains the size of
an object in bytes

key R

NSS

User

FC_GetAttributeValue Obtains an
attribute value of
an object

key R

NSS

User

FC_SetAttributeValue Modifies an
attribute value of
an object

key W

NSS

User

FC_FindObjectsInit Initializes an object
search operation

none -

NSS

User

FC_FindObjects Continues an object
search operation

keys matching
the search
criteria

R

NSS

User

FC_FindObjectsFinal Finishes an object
search operation

none -

NSS

User

FC_EncryptInit Initializes an
encryption
operation

encryption key R

NSS

User

FC_Encrypt Encrypts single-part
data

encryption key R

NSS

User

FC_EncryptUpdate Continues a
multiple part
encryption
operation

encryption key R

NSS

User

FC_EncryptFinal Finishes a multiple
part encryption
operation

encryption key R

NSS

User

FC_DecryptInit Initializes a
decryption
operation

encryption key R

NSS

User

FC_Decrypt Decrypts single-
part encrypted data

encryption key R

NSS

User

FC_DecryptUpdate Continues a
multiple part
decryption
operation

encryption key R

Encryption
and
Decryption

NSS

User

FC_DecryptFinal Finishes a multiple
part decryption
operation

encryption key R

Everyone FC_DigestInit Initializes a
message digesting
operation

none -

Everyone FC_Digest Digests single-part
data

none -

Everyone FC_DigestUpdate Continues a
multiple part
digesting operation

none -

Message
Digesting

NSS FC_DigestKey Continues a
multipart message

key R

Wind River Systems Inc. Version 1.2 Page 21 of 43

Service

Category

Role Function Name Description CSPs Access
type

User

(see the
note at
the end
of the
table)

digesting operation
by digesting the
value of a secret
key as part of the
data already
digested

Everyone FC_DigestFinal Finishes a multiple
part digesting
operation

none -

NSS

User

FC_SignInit Initializes a
signature operation

signing/HMAC keyR

NSS

User

FC_Sign Signs single-part
data

signing/HMAC keyR

NSS

User

FC_SignUpdate Continues a
multiple part
signature operation

signing/HMAC keyR

NSS

User

FC_SignFinal Finishes a multiple
part signature
operation

signing/HMAC keyR

NSS

User

FC_SignRecoverInit Initializes a
signature
operation, where
the data can be
recovered from the
signature

RSA signing key R

NSS

User

FC_SignRecover Signs single-part
data, where the
data can be
recovered from the
signature

RSA signing key R

NSS

User

FC_VerifyInit Initializes a
verification
operation

Verification/HMAC
key

R

NSS

User

FC_Verify Verifies a signature
on single-part data

verification/HMAC
key

R

NSS

User

FC_VerifyUpdate Continues a
multiple part
verification
operation

verification/HMAC
key

R

NSS

User

FC_VerifyFinal Finishes a multiple
part verification
operation

RSA verification
key

R

Signature and
Verification

NSS

User

FC_VerifyRecover Verifies a signature
on single-part data,
where the data is
recovered from the
signature

RSA verification
key

R

Key

Management

NSS

User

FC_GenerateKey Generates a secret
key (used by TLS to
generate premaster

key W

Wind River Systems Inc. Version 1.2 Page 22 of 43

Service

Category

Role Function Name Description CSPs Access
type

secrets)

NSS

User

FC_GenerateKeyPair Generates a
public/private key
pair. This function
performs the pair
wise consistency
tests.

key pair W

wrapping key R NSS

User

FC_WrapKey Wraps (encrypts) a
key key to be

wrapped
R

Unwrapping key R NSS

User

FC_UnwrapKey Unwraps (decrypts)
a key Unwrapping key W

base key R

NSS

User

FC_DeriveKey Derives a key from
a base key (used
by TLS to derive
keys from the
master secret)

derived key W

NSS

User

FC_DigestEncryptUpdateContinues a
multiple part
digesting and
encryption
operation

encryption key R

NSS

User

FC_DecryptDigestUpdateContinues a
multiple part
decryption and
digesting operation

decryption key

R

signing/HAMC keyR NSS

User

FC_SignEncryptUpdate Continues a
multiple part
signing and
encryption
operation

encryption key R

decryption key

R

Dual-function
cryptographic
operations

NSS

User

FC_DecryptVerifyUpdateContinues a
multiple part
decryption and
verify operation verification/

HMAC key

R

Everyone FC_SeedRandom Mixes in additional
seed material to
the random number
generator

mixed-in seed RW

Random
Number
Generation

Everyone FC_GenerateRandom Generates random
data. This function
performs the
continuous random
number generator
test.

initial seed,
random values
for key material

RW

Parallel
Function
Management

NSS

User

FC_GetFunctionStatus A legacy function,
which simply
returns the value
0x00000051
(function not

none -

Wind River Systems Inc. Version 1.2 Page 23 of 43

Service

Category

Role Function Name Description CSPs Access
type

parallel)

NSS

User

FC_CancelFunction A legacy function,
which simply
returns the value
0x00000051
(function not
parallel)

none -

Note: The message digesting functions (except FC_DigestKey) don't require the user to assume
an authorized role because they do not use any keys. FC_DigestKey computes the message digest
(hash) of the value of a secret key; therefore the user needs to assume the NSS User role for this
service.

4.4 Operator Authentication
The following sections describe the authentication policy of the NSS Cryptographic module.

4.4.1 Role-Based Authentication
The NSS cryptographic module uses role-based authentication to control access to the NSS
module. To perform sensitive services using NSS cryptographic module, the user must log into the
module and perform authentication procedure using a password. This password is used to encrypt
and decrypt private key of the user. However, a discretionary access control is used to protect all
other information (for example, the public key certificate database). See Section 8.2.2 for details
regarding the discretionary access control.

Note: For Security Level 1, a cryptographic module is not required to employ authentication
mechanisms to control access to the module.

4.4.2 Clearing of Previous Authentications on Power Off
When the process accessing the NSS cryptographic module terminates or the general purpose
computer is powered off, the result of authentications in the memory are automatically cleared.

4.4.3 Protection of Authentication Data
The NSS cryptographic module stores a verifier for the user’s password in the NSS key database.
The module verifies the password by deriving a Triple-DES key from the password, using an
extension of the PKCS #5 PBKDF1 key derivation function with an 16-octet salt, an iteration count
of 1, and SHA-1 as the underlying hash function, decrypting the stored encrypted password check-
string with the Triple-DES key, and comparing the decrypted string with the known password
check-string. It is computationally infeasible to acquire a password from the verifier. This
mechanism protects against unauthorized disclosure and modification of the user’s password.

4.4.4 Initialization of Authentication Mechanism
The operator implicitly assumes a Crypto Officer role when installing the NSS cryptographic
module library files. Once the library files are installed, the Crypto Officer calls the function
FC_InitPIN to set the operator's initial password. Please note that it is not necessary to call
FC_InitToken to initialize the NSS cryptographic module. The NSS cryptographic module is
initialized automatically when FC_Initialize is called for the first time. The Crypto Officer may call
FC_InitToken to re-initialize the NSS cryptographic module.

When the NSS cryptographic module is accessed for the first time, it does not use a factory-set or
default password to authenticate the operator. Hence, login mechanism of the general purpose
computer is used to control access to the module before it is initialized. If the general purpose
computer is not protected with a system login password, procedural controls or physical access
control must be used to control access to the computer before the module is initialized.

Wind River Systems Inc. Version 1.2 Page 24 of 43

4.4.5 Change of Authentication Data
A Function FC_SetPIN is called with both the old password and new password as arguments to
change the password by the NSS user.

4.4.6 Strength of Authentication Mechanism
The NSS cryptographic module enforces the following requirements on password change or
initialization in the FIPS approved mode:

⚫ The password must be seven characters long

⚫ The password must contain characters from three or more character classes. There are five
characters classes: digits (0-9), ASCII lowercase letters, ASCII uppercase letters, ASCII non-
alphanumeric characters (such as space and punctuation marks), and non-ASCII characters.

Note: If the first character of the password is an ASCII uppercase, or the last character of the
password is a digit, then neither the uppercase letter nor the digit is counted towards its
character class.

Probability of guessing the correct password randomly

Assumptions:

 The password is at least seven characters long and the characters of the password are
independent with each other.

 The probability of guessing an individual character of the password is less than 1/10.

The probability of a successful password guess is less than (1/10) ^ 7= 1/10,000,000.

In the FIPS approved mode, after each failed authentication attempt, the NSS cryptographic
module introduces a one-second delay before returning to the caller. This mechanism allows at
most 60 authentication attempts during a one minute period. Therefore, the probability of a
successful password guess is less than 0.6* (1/100,000).

4.4.7 Concurrent Operators
The NSS cryptographic module does not allow concurrent operators. Please note that on a multi-
user operating system; this rule is enforced by making the NSS certificate and private key
databases readable and writable to the owner of the files only.

Wind River Systems Inc. Version 1.2 Page 25 of 43

5 Access Control Policy
This section identifies CSPs and cryptographic keys that the user has access to while performing a
service and the type of access the user has to the CSPs.

5.1 Cryptographic Keys and CSPs
In the FIPS- Approved mode, the NSS cryptographic module employs the following cryptographic
keys and CSPs:

⚫ AES secret keys (128-bit, 192-bit and 256-bit) may be stored in the memory or private
database (key3.db, key4.db)

⚫ Triple-DES secret keys (168-bit) may be stored in the memory or private database (key3.db,
key4.db)

⚫ DSA public and private keys (1024-bit) may be stored in the memory or private database
(key3.db, key4.db)

⚫ Diffie-Hellman public and private keys (1024-2236 bit) may be stored in the memory or private
database (key3.db, key4.db)

⚫ RSA public and private keys (1024-2236 bit) may be stored in the memory or private database
(key3.db, key4.db)

⚫ EC public and private keys (160 bits or higher) may be stored in the memory or private
database (key3.db, key4.db)

⚫ HMAC keys (size must be greater than or equal to half the size of hash function output) may
be stored in the memory or private database (key3.db, key4.db)

⚫ Hash_DRBG (SHA 256): Hash DRBG entropy - 880-bit value externally-obtained for module
DRBG; stored in plaintext in volatile memory. Hash DRBG V value - Internal Hash DRBG state
value; stored in plaintext in volatile memory. Hash DRBG C value - Internal Hash DRBG state
value; stored in plaintext in volatile memory

⚫ TLS pre-master secret used in deriving the TLS master secret (48 byte) and TLS master secret
shared between the peers in TLS connections, used in the generation of symmetric cipher
keys, IVs, and MAC secrets for TLS (48 byte) may be stored in the memory

⚫ Authentication data (passwords) may be stored in the private key database (key3.db, key4.db)

The module stores all cryptographic keys, CSPs, and plaintext data in the NSS database. The
module permits only the owner of the files to read and modify the NSS database with proper
authentication.

Note: The private key database (key3.db, key4.db) mentioned above are outside the NSS
cryptographic boundary. Also, the NSS module does not implement the TLS protocol. Rather, it
implements the cryptographic mechanism, such as the TLS-specific key generation and derivation
operations, which can be used to implement the TLS protocol.

Wind River Systems Inc. Version 1.2 Page 26 of 43

6 Finite State Model
The state transition diagram of NSS cryptographic module is shown below:

Figure 6.1 State transition diagram of NSS cryptographic module

In the FIPS-Approved mode, when the application calls the FC_Initialize function of the NSS
cryptographic module, the state changes and power up self tests are performed. If the self-test is
successful, the module is considered to be initialized and enters an operational state of the FIPS
approved mode. Please refer to Section 10 for a description of power up self test. If the module
enters an error state, then in order to recover from the error state, it needs to shutdown (transition
3.0) and re-initialized (transition 1.1).

If the data and control inputs are valid and the module performs the service successfully, the
module outputs the requested data or status information and returns CKR_OK. If the data and
control inputs are invalid or the module encounters an error (for example, running out of memory)
when performing a service, the module does not output any data and simply returns an

Wind River Systems Inc. Version 1.2 Page 27 of 43

appropriate error code (for example, CKR_HOST_MEMORY, CKR_TOKEN_WRITE_PROTECTED,
CKR_TEMPLATE_INCOMPLETE, or CKR_ATTRIBUTE_VALUE_INVALID).

The following table shows various states of NSS cryptographic module:

Wind River Systems Inc. Version 1.2 Page 28 of 43

Table 9 States

State
Label

State
Mnemonic

State Descriptor Distinct Indicator

1.X Power Off Host computer is powered off.
The initial state

Host computer's power light is off.

1.A Inactive Host computer is up and
running.

Host computer's power light is on.

1.B Power up Self
test

NSS cryptographic module
library initialization for the
FIPS approved mode has been
initiated. This state performs
library initialization, software
integrity test, and power-up
self-tests.

The FC_Initialize call is executing.

1.C Public Services NSS cryptographic module
library has been initialized for
the FIPS approved mode and
its self-tests have passed.
Services that do not require
logging in to the module are
available.

Public services can be invoked. Private
services fail with the error code
CKR_USER_NOT_LOGGED_IN.

2 NSS User
Services

Operator has successfully
logged in to assume the NSS
User role and has access to
all the services provided by
the FIPS approved mode of
the NSS cryptographic
module.

All services can be invoked.

3 Error The FIPS approved mode of
the NSS cryptographic
module either has failed a
conditional test while
performing a service or has
failed a power-up or operator-
initiated self-test. No further
cryptographic operations will
be performed.

Only FC_Finalize, FC_InitToken,
FC_CloseSession,
FC_CloseAllSessions,
FC_WaitForSlotEvent, and the "get
info" functions (FC_GetFunctionList,
FC_GetInfo, FC_GetSlotList,
FC_GetSlotInfo, and
FC_GetTokenInfo) can be invoked.
FC_Initialize fails with the error
code
CKR_CRYPTOKI_ALREADY_INITIALIZED.
All other functions fail with the error
code CKR_DEVICE_ERROR.

5.B Non- FIPS mode The non-FIPS approved mode
of the NSS cryptographic
module has been activated.
This is a composite state
whose sub-states are not
relevant to FIPS 140-2.

NSC_Initialize has been called
successfully. All other NSC_xxx
functions may be called.

Wind River Systems Inc. Version 1.2 Page 29 of 43

Table 10 Transitions

Transition# Current
State

Next
State

Input Event Output Event

1.0 Power Off Inactive Host computer is powered
up

None

1.1 Inactive Power Up
Self Test

FC_Initialize called Opens the databases. Power-
up self-tests initiated.

1.2 Power Up
Self Test

Public
Services

Successful library
initialization, software
integrity test, and power-
up self-tests

FC_Initialize sets the
internal Boolean state variable
sftk_fatalError to false and
returns CKR_OK

1.3 Power Up
Self Test

Error Software integrity test or
power-up self-test failure

FC_Initialize sets the
internal Boolean state variable
sftk_fatalError to true and
returns CKR_DEVICE_ERROR

1.4 Public
Services

Error Conditional self-test
(continuous random
number generator test)
failed while performing a
service (random number
generation)

The function (FC_SeedRandom
or FC_GenerateRandom) sets
the internal Boolean state
variable sftk_fatalError to
true and returns
CKR_DEVICE_ERROR

1.5 Public
Services

NSS User
Services

User login succeeded FC_Login sets the internal
Boolean state variable
isLoggedIn to true and
returns CKR_OK

1.6 Public
Services

Public
Services

User login failed FC_Login returns a nonzero
error code (for example,
CKR_PIN_INCORRECT)

1.7 Public
Services

Inactive FC_Finalize called FC_Finalize returns CKR_OK

2.1 NSS User
Service

Public
Services

User logout requested FC_Logout sets the internal
Boolean state variable
isLoggedIn to false and
returns CKR_OK

2.5 NSS User
Service

Inactive FC_Finalize called FC_Finalize returns CKR_OK

2.6 NSS User
Service

Error Conditional self-test
(continuous random
number generator test or
pair-wise consistency test)
failed while performing a
service (random number
generation or key pair
generation)

The function (FC_SeedRandom,
FC_GenerateRandom, or
FC_GenerateKeyPair) sets the
internal Boolean state variable
sftk_fatalError to true and
returns CKR_DEVICE_ERROR or
CKR_GENERAL_ERROR

3.0 Error Inactive FC_Finalize called FC_Finalize returns CKR_OK

4.0 Any State
other than
“Power Off”

Power Off Host computer is powered
off

None

Wind River Systems Inc. Version 1.2 Page 30 of 43

Transition# Current
State

Next
State

Input Event Output Event

5.1 Inactive Non-FIPS
mode

NSC_Initialize called Opens the databases.
NSC_Initialize returns
CKR_OK

5.2 Non-FIPS
mode

Inactive NSC_Finalize called NSC_Finalize returns CKR_OK

Wind River Systems Inc. Version 1.2 Page 31 of 43

7 Physical Security (140-2 Section 4.5)
The NSS cryptographic module is a security level 1 software module and offers no physical
security.

Wind River Systems Inc. Version 1.2 Page 32 of 43

8 Operational Environment (140-2 Section 4.6)
The following sections describe the operational environment of the NSS cryptographic module.

8.1 Applicability
The NSS cryptographic module has a general purpose, modifiable operational environment. For
security level 1, it uses the following commercially available operating systems:

Wind River Linux Secure 1.0

8.2 Solution

8.2.1 Single Operator mode of Operation
In order to use the NSS cryptographic module at security level 1, there may be multiple users, but
only one user at a time should use the module. For a note on concurrent users, please refer to
Section 4.4.7.

8.2.2 Configuration of Discretionary Access Control
In order to restrict access to stored cryptographic software and programs, the user should set the
file mode permissions so that all users can execute the library files, but only the files' owner can
modify the files (write, replace, and delete) during the installation of the NSS cryptographic
Library. For more information regarding access to the cryptographic keys, CSPs, and plaintext
data, refer to Section 5.1.

8.2.3 Software Integrity Test
Refer to Section 10.1.2.

Wind River Systems Inc. Version 1.2 Page 33 of 43

9 Cryptographic Key Management (140-2 Section 4.7)
The following sections describe the key management of the NSS cryptographic module.

9.1 Key/CSP Storage
The NSS cryptographic module does not store any password (for example, the password for
password-based encryption, or the private key database password) on the disk in plaintext. At
security level 1, the module limits the operating system to a single operator mode of operation.
The cryptographic keys are stored as follows:

Table 11 Key Storage

Type of key Storage

Private and secret keys Private key database

Public keys and certificate Private key and certificate database

Temporary (session) keys Memory (RAM)

The OS protects all the cryptographic keys stored in the private key database and certificate
database from unauthorized disclosure, modification, and substitution. When the public keys are
stored in the memory, the OS protects them from unauthorized disclosure, modification, and
substitution.

The following keys are used internally by the module and are not visible to the operator:

⚫ The Triple-DES key used to encrypt the secret keys and private keys is derived from the user's
password and it is stored in the private key database.

⚫ The 1024-bit DSA public keys for the software integrity test are stored along with the DSA
signatures in the .chk files for the softoken (PKCS #11), libnssdbm3, and freebl shared
libraries/DLLs. The DSA domain parameters (prime p, subprime q, base g) and public key (y)
are stored in a straight binary format (not DER encoded).

9.2 Key and CSP List
Refer to Section 5.1 for the list of cryptographic keys and CSPs.

9.3 Key/CSP Generation
The NSS cryptographic module uses the FC_GenerateKey function to generate secret keys and
domain parameters, and the FC_GenerateKeyPair function to generate public/private key pairs.
The NSS cryptographic module generates keys with at most 256 bits of security (refer to table 2 in
Section 5.6.1 of NIST Special Publication (SP) 800-57 Part 1), Therefore, compromising the security
of the key generation method (for example, guessing the seed value to initialize the Approved
RNG) requires at least as many operations as determining the value of the generated key.

The following approved key generation methods are used by the module:

⚫ The Approved RNG specified as Algorithm Hash_DRBG of SP 800-90 is used to generate
cryptographic keys (for example, secret keys for symmetric key algorithms and HMAC) used
by the approved and non-approved security functions.

⚫ DSA public and private keys are generated using the method specified in FIPS 186-2 with
Change Notice 1.

⚫ RSA public and private keys are generated using the method specified in PKCS #1.

⚫ ECDSA public and private keys are generated using the method specified in ANSI X9.62-1998.

⚫ The prime numbers that are generated for both RSA and DSA are tested using the Miller-Rabin
test (FIPS 186-2 Appendix 2.1. A Probabilistic Primality Test).

Wind River Systems Inc. Version 1.2 Page 34 of 43

9.4 Key/CSP Establishment
Please refer to Table 5 in Section 2.4 for information regarding Key/CSPs establishment
techniques.

9.5 Key/CSP Entry and Output
The NSS cryptographic module does not use either manual or electronic key entry and output
methods or support entry of the seed key during key generation. The module uses the following
automated key transport methods:

⚫ The FC_UnwrapKey function enters an encrypted secret or private key into the module.

⚫ The FC_WrapKey function outputs an encrypted secret or private key from the module.

In the FIPS approved mode of operation, the encrypted secret and private keys, entered into or
output from the module are encrypted using one of the following approved algorithms:

⚫ Triple-DES

⚫ AES

⚫ Key Wrapping using RSA keys

Note: A password based encryption is not FIPS approved. Hence, the AES or Triple-DES key
derived from a password, the encrypted secret or private key is considered to be in plaintext form.

9.6 Key/CSP Zeroization
The NSS cryptographic module performs key zeroization to clear the memory area pre-occupied by
the private key, secret key and password. The passwords are automatically zeroized by the
module after use. All plaintext secret and private keys are zeroized when:

⚫ The module is shutdown with a FC_Finalize call

⚫ The module switches between the FIPS and non-FIPS modes with a
NSC_Finalize/FC_Initialize or FC_Finalize/NSC_Initialize call sequence

⚫ The module is reinitialized with a FC_InitToken call

⚫ A plaintext secret or private key is zeroized when it is deleted with a FC_DestroyObject call

A standard C library function PORT_memset/memset () is used to zeroize memory used by
plaintext secret and private keys and passwords. The PORT_ZFree() function is used to free and
zeroize the memory which is allocated from heap.

9.7 Random Number Generation
The NSS cryptographic module uses only the Approved RNG, implementing Algorithm Hash_DRBG
of NIST SP 800-90 to generate cryptographic keys used by an approved security function. The
certificate number of RNG obtained through the Cryptographic Algorithm Validation Program
(CAVP) is #49.

Wind River Systems Inc. Version 1.2 Page 35 of 43

10 Self-Tests (140-2 Section 4.9)
FIPS 140-2 requires that the module perform self-tests to ensure the integrity of the module and
the correctness of the cryptographic functionality at start up. In addition, some functions require
continuous verification of the function, such as the random number generator. All of these tests
are listed and described in this section.

10.1 Power-Up Tests (140-2 Section 4.9.1)
The following tests are performed each time the NSS cryptographic module starts and must be
completed successfully for the module to operate in the FIPS approved mode.

10.1.1 Cryptographic Algorithm Test
Table 12 Cryptographic Algorithm Tests (ref: fipstest.c, PKCS #11 FIPS Power-Up Self

Test)

Algorithm Modes / Operation Test

Triple-DES CBC (encrypt/decrypt) KAT (Known Answer Test)

ECB (encrypt/decrypt) KAT AES- 128, AES-192, AES-256,

CBC (encrypt/decrypt) KAT

SHA-1, SHA-256, SHA-384, SHA-512 hash KAT

HMAC-SHA-1, HMAC-SHA-256,
HMAC-SHA-384, HMAC-SHA-512

keyed hash (296 bit key) KAT

RSA encrypt/decrypt

(1024-bit modulus n),

KAT

signature generation

(2048-bit modulus n)

KAT RSA-SHA-256/-SHA-384/-SHA-512

signature verification

(2048-bit modulus n)

KAT

key pair generation

(1024-bit prime modulus p)

KAT

signature generation

 (1024-bit prime modulus p)

KAT

DSA

signature verification

(1024-bit prime modulus p)

KAT

signature generation (Curve
P-256; the Extend ECC
version of the module also
tests Curve K-283)

KAT ECDSA

signature verification (Curve
P-256; the Extend ECC
version of the module also
tests Curve K-283)

KAT

RNG N/A KAT

Note: Cryptographic algorithms whose outputs vary for a given set of inputs (DSA and ECDSA) are
tested using a known-answer test. The message digest algorithms have independent known-
answer tests.

Wind River Systems Inc. Version 1.2 Page 36 of 43

10.1.2 Software/Firmware Integrity Test
A software integrity test is performed on the libraries of the NSS cryptographic module. DSA is
used as the approved authentication technique for the integrity test. If the test fails, then the
module immediately enters the error state.

10.2 Conditional Tests (140-2 Section 4.9.2)
The following sections describe the conditional tests supported by the NSS cryptographic module.

10.2.1 Continuous Random Number Generator Test
The NSS cryptographic module performs a continuous random number generator test, whenever
the pseudorandom number generator is invoked.

10.2.2 Pair-wise Consistency Test
The NSS cryptographic module performs a pair-wise consistency test, whenever the RSA, DSA,
and/or ECDSA key pair generation is invoked.

10.2.3 Critical Function Test
No other critical function test is performed on power up.

Wind River Systems Inc. Version 1.2 Page 37 of 43

11 Design Assurance (140-2 Section 4.10)
This section identifies the best practices used by Wind River Systems Inc during the design,
deployment, and operation of the NSS cryptographic module.

11.1 Configuration management
The NSS cryptographic module is managed in a GIT-based configuration management system. The
NSS module and its components within cryptographic boundary and associated module
documentation are versioned, ensuring that changes and revisions to the modules can be
controlled. Further, any and all changes to the source code are logged including the author of the
change and the exact changes made.

11.2 Delivery and Operation
The NSS cryptographic modules are delivered as part of an overall root file-system in a single tar-
ball. Within the tar-ball the modules are already configured and installed to start automatically by
the operating system on boot. Further, the packages themselves within the root file-system are
stripped and a checksum is computed to ensure that the packages have not been compromised
during delivery. Upon delivery, the root file-system is simply installed directly onto a bare-metal
target and booted. When booted, the system defaults to a secure mode of operation which
ensures that no tampering may occur. In a secure mode of operation, all the security features (for
example, process separation, access control etc.) required by a general purpose computer are
enabled when the system is booted.

11.2.1 Security Rules
When in FIPS approved mode, the NSS Cryptographic Module, and all the applications using this
module, must adhere to the following set of security rules:

The user must only use the FIPS 140-2 approved security functions listed in Section 2.4 or security
functions allowed in the FIPS approved mode;

⚫ The underlying operating system must ensure the integrity of the NSS cryptographic module
loaded into memory;

CAVEAT: The security assurances provided by the operating system are not a FIPS 140-2
requirement. Consequently, the module validation does not address if this is met or not met.

⚫ All cryptographic keys used must be generated in the FIPS approved mode of operations or
imported while running in the FIPS approved mode;

⚫ The module controls the Critical Security Parameters (CSP) (for example, keys, and password,
pin) and does not share the CSPs between an approved and a non-approved mode of
operations. Secret and private keys are only to be passed to the calling application in
encrypted (wrapped) form with FC_WrapKey using Triple-DES or AES (symmetric key
algorithms) or RSA (asymmetric key algorithm). If a symmetric key algorithm is used to
encrypt the secret and the private keys to pass to higher-level callers, the encryption key may
derived from a password and, they should be considered to be in plaintext form in the FIPS
approved mode;

⚫ The software library binary of the module for each supported platform must only be installed
on the corresponding platform listed in Section 2.2;

⚫ In the FIPS approved mode, applications must call FC_GetFunctionList to obtain the function
pointers providing the functional interface of the module. For all cryptographic operations, the
applications must call the API function via these function pointers. Please note that when a
FC_Finalize/NSC_Initialize sequence is executed, the module changes from FIPS approved
mode to non-approved mode and when a NSC_Finalize/FC_Initialize sequence is
executed; it changes from non-approved mode to FIPS approved mode. The operator may
determine with the API function call FC_GETSlotInfo (slotDescription) whether the module is
invoked for the Approved mode of operation.

Wind River Systems Inc. Version 1.2 Page 38 of 43

⚫ The environment variable NSS_ENABLE_AUDIT must be set to 1 before the application starts.

⚫ The NSS cryptographic module must contain the following shared libraries/DLLs and the
corresponding .chk files:

64- bit Wind River Secure Linux 1.0

⚬ /lib64/libfreebl3.chk

⚬ /lib64/libfreebl3.so

⚬ /lib64/libnssdbm3.chk

⚬ /lib64/libnssdbm3.so

⚬ /lib64/libsoftokn3.chk

⚬ /lib64/libsoftokn3.so

The Wind River build system builds a complete pre-configured file-system and kernel that is
delivered as a tar-ball and kernel bzImage. This is installed directly as a “bare metal” install onto
the target. The preconfigured file-system contains all configuration files and other necessary files.
When the target boots for the first time the system automatically generates checksums and
performs self-tests on the NSS library to ensure that it is configured and running in FIPS approved
mode. If these test fail and/or the NSS libraries are found to be running in non-FIPS mode the boot
will log an error and enter a diagnostic/recovery mode of operation.

The libraries are installed in the directory /lib64.

The instructions to configure and build a file-system are as follows:

Install Wind River Secure Linux 1.0 DVD build environment

Configure a build specific to the intended target

Run “make” command within the target build

Install the resulting file-system tar-ball and kernel bzImage onto the target

Boot the target

Check to ensure the following libraries have read and execute privileges for everyone, and write
access only to the owner (permission mask 0755):

 libsoftokn3.so

 libfreebl3.so Security_ Policy_Wind_River_NSS_3.12.4.pdf

 libnssdbm3.so

Also, ensure that the following checksum files have read access by all and write access by only the
owner (permission mask 0644):

 libsoftokn3.chk

 libfreebl3.chk

 libnssdbm3.chk

11.3 Development
Please refer to chapter 2 for cryptographic module specification. The developer provided a well
commented source code [NSS_CM3.12.4] of NSS Cryptographic Module.

11.4 Guidance Documents
The developer provided guidance in the form of Mozilla wiki pages. Please see to the references for
a list of Mozilla wiki pages. Also, the guidance for user and crypto officer is provided in section 11.2

Wind River Systems Inc. Version 1.2 Page 39 of 43

12 Mitigation of Other Attacks
The NSS cryptographic module is designed to mitigate the following attacks:

Table 13 Mitigation of Attacks

Other Attacks Mitigation Mechanism Specific Limitations

Timing attacks on RSA Timing attack on RSA was first
demonstrated by Paul Kocher in
1996 [TAIDHRD], who
contributed the mitigation code
to our module. Most recently
Boneh and Brumley [RTAP]
showed that RSA blinding is an
effective defense against timing
attacks on RSA.

None

Cache-timing attacks on the
modular exponentiation
operation used in RSA and DSA

Cache invariant modular
exponentiation

This is a variant of a modular
exponentiation implementation
that Colin Percival [CMFP]
showed to defend against
cache-timing attacks.

This mechanism requires
intimate knowledge of the cache
line sizes of the processor. The
mechanism may be ineffective
when the module is running on a
processor whose cache line
sizes are unknown.

Arithmetic errors in RSA
signatures

Double-checking RSA
signatures

Arithmetic errors in RSA
signatures might leak the
private key. Ferguson and
Schneier [PCCRS] recommend
that every RSA signature
generation should verify the
signature just generated.

None

Wind River Systems Inc. Version 1.2 Page 40 of 43

13 Electromagnetic Interference/Electromagnetic
Compatibility (EMI/EMC)

EMI/EMC properties of NSS cryptographic module are not meaningful for the library itself. Systems
utilizing the NSS library services have their overall EMI/EMC ratings determined by the host
system. The validation environments have FCC Class A and B ratings.

Wind River Systems Inc. Version 1.2 Page 41 of 43

14 Sample Cryptographic Module Initialization Code
The following sample code uses NSPR functions (declared in the header file “prlink.h”) for dynamic
library and function symbol lookup.

#include "prlink.h"
#include "cryptoki.h"
#include <assert.h>
#include <stdio.h>
#include <string.h>
/*
* An extension of the CK_C_INITIALIZE_ARGS structure for the * NSS cryptographic module. The
'LibraryParameters' field is
* used to pass instance-specific information to the library * (like where to find its config files, etc).
*/
typedef struct CK_C_INITIALIZE_ARGS_NSS {

CK_CREATEMUTEX CreateMutex;
CK_DESTROYMUTEX DestroyMutex;
CK_LOCKMUTEX LockMutex;
CK_UNLOCKMUTEX UnlockMutex;
CK_FLAGS flags;
CK_CHAR_PTR *LibraryParameters;
CK_VOID_PTR pReserved;

} CK_C_INITIALIZE_ARGS_NSS;

int main()
{

char *libname;
PRLibrary *lib;
CK_C_GetFunctionList pFC_GetFunctionList;
CK_FUNCTION_LIST_PTR pFunctionList;
CK_RV rv;
CK_C_INITIALIZE_ARGS_NSS initArgs;
CK_SLOT_ID slotList[2], slotID;
CK_ULONG ulSlotCount;
CK_TOKEN_INFO tokenInfo;
CK_SESSION_HANDLE hSession;
CK_UTF8CHAR password[] = "1Mozilla";
PRStatus status;

/*
* Get the platform-dependent library name of the NSS
* cryptographic module.
*/

libname = PR_GetLibraryName(NULL, "softokn3");
assert(libname!= NULL);
lib = PR_LoadLibrary(libname);
assert(lib!= NULL);
PR_FreeLibraryName(libname);

pFC_GetFunctionList = (CK_C_GetFunctionList)

PR_FindFunctionSymbol(lib, "FC_GetFunctionList");
assert(pFC_GetFunctionList!= NULL);
rv = (*pFC_GetFunctionList)(&pFunctionList);

assert(rv == CKR_OK);

Wind River Systems Inc. Version 1.2 Page 42 of 43

/* Call FC_xxx via the function pointer pFunctionList->C_xxx */

initArgs.CreateMutex = NULL;
initArgs.DestroyMutex = NULL;
initArgs.LockMutex = NULL;
initArgs.UnlockMutex = NULL;
initArgs.flags = CKF_OS_LOCKING_OK;
initArgs.LibraryParameters = (CK_CHAR_PTR *)

"configdir='.' certPrefix='' keyPrefix='' "
"secmod='secmod.db' flags= ";

initArgs.pReserved = NULL;
rv = pFunctionList->C_Initialize(&initArgs);
assert(rv == CKR_OK);

ulSlotCount = sizeof(slotList)/sizeof(slotList[0]);
rv = pFunctionList->C_GetSlotList(CK_TRUE, slotList, &ulSlotCount);
assert(rv == CKR_OK);
slotID = slotList[0];

rv = pFunctionList->C_OpenSession(slotID,
CKF_RW_SESSION | CKF_SERIAL_SESSION, NULL, NULL, &hSession);
assert(rv == CKR_OK);

/* set the operator's initial password, if necessary */

rv = pFunctionList->C_GetTokenInfo(slotID, &tokenInfo);
assert(rv == CKR_OK);

if (!(tokenInfo.flags & CKF_USER_PIN_INITIALIZED)) {
/*
* As a formality required by the PKCS #11 standard, the
* operator must log in as the PKCS #11 Security Officer (SO),
* with the predefined empty string password, to set the
* operator's initial password.
*/
rv = pFunctionList->C_Login(hSession, CKU_SO, NULL, 0);
assert(rv == CKR_OK);

rv = pFunctionList->C_InitPIN(hSession,
password, strlen(password));
assert(rv == CKR_OK);

/* log out as the PKCS #11 SO */

rv = pFunctionList->C_Logout(hSession);
assert(rv == CKR_OK);
}
/* the module is now ready for use */

/* authenticate the operator using a password */

rv = pFunctionList->C_Login(hSession, CKU_USER,
password, strlen(password));
assert(rv == CKR_OK);

Wind River Systems Inc. Version 1.2 Page 43 of 43

The mode of operation of the NSS cryptographic module is determined by the second argument
passed to the PR_FindFunctionSymbol function.

 For the non-FIPS approved mode of operation, look up the standard PKCS #11 function
C_GetFunctionList

 For the FIPS approved mode of operation, look up the alternative function
FC_GetFunctionList.

/* use the module's services ... */

rv = pFunctionList->C_CloseSession(hSession);
assert(rv == CKR_OK);

rv = pFunctionList->C_Finalize(NULL);
assert(rv == CKR_OK);

status = PR_UnloadLibrary(lib);
assert(status == PR_SUCCESS);
return 0;
}

