

CCORE Module FIPS 140-2 Level 1
Security Policy

Document Version: 4.1
Date: April 13, 2010

Prepared for: CellCrypt Limited

Revision History

Version Date Author
0.1 07-11-2008 C. Davies (Cell Telecom Ltd.)
0.2 07-27-2008 C. Davies (Cell Telecom Ltd.)
0.3 08-12-2008 C. Davies (Cell Telecom Ltd.)
0.4 11-12-2008 C. Davies (Cell Telecom Ltd.)
1.0 11-12-2008 C. Davies (Cell Telecom Ltd.)
2.0 19-12-2008 C. Davies (Cell Telecom Ltd.)
3.0 22-12-2008 Saffire Systems
3.1 12-01-2009 Saffire Systems
3.2 16-01-2009 Saffire Systems
3.3 02-02-2009 Saffire Systems
3.4 02-18-2009 Saffire Systems
3.5 05-01-2009 Saffire Systems
3.6 06-11-2009 Saffire Systems
3.7 06-17-2009 Saffire Systems
3.8 06-30-2009 Saffire Systems
4.0 01-27-2010 Saffire Systems
4.1 04-13-2010 J. Smith (CygnaCom Solutions)

Table of Contents

CCORE Module Security Policy i

1 Introduction ... 1

1.1 Purpose .. 1
1.2 Security Level Summary .. 1

2 CCORE Module Specification... 1
2.1 Hardware Platform ... 2
2.2 Module Boundary ... 2
2.3 FIPS-Approved Mode of Operation .. 4

3 Ports and Interfaces.. 4
4 Roles, Services and Authentication .. 5
5 Physical Security... 7
6 Operational Environment .. 7
7 Cryptographic Key Management .. 8

7.1 FIPS Approved Algorithms ... 8
7.2 FIPS Allowed Algorithms.. 9
7.3 FIPS Non-Approved and Other Algorithms .. 9
7.4 Cryptographic Keys and Critical Security Parameters 9

8 Self Tests .. 10
8.1 Power-up Self-Tests... 10
8.2 Conditional Self-Tests .. 10

9 Mitigation of Other Attacks.. 11
10 OperationAL Guidance... 11

10.1 Crypto Officer Guidance... 11
10.2 User Guidance ... 12

11 Glossary ... 14

Table of Tables

Table 1 Security Level Summary ... 1
Table 2 Ports and Interfaces.. 5
Table 3 Services Authorized for Roles... 6
Table 4 Access Rights within Services for Crypto Officer .. 6
Table 5 Access Rights within Services for User... 7
Table 6 FIPS Approved Algorithms.. 8
Table 7 FIPS Allowed Algorithms... 9
Table 8 FIPS Non-Approved and Other Algorithms ... 9
Table 9 Cryptographic Keys and Critical Security Parameters 10
Table 10 Power-Up Self Tests ... 10
Table 11 Conditional Self Tests ... 10

Table of Figures

Figure 1 Logical Diagram... 3
Figure 2 Physical Cryptographic Module ... 4

CCORE Module Security Policy 1

1 INTRODUCTION

1.1 Purpose
This non-proprietary document specifies the Security Policy for Cellcrypt’s CCORE
Module and was developed as part of the Federal Information Processing Standard
(FIPS) 140-2 Level 1 validation of CCORE version 0.6.0-rc3 (hereafter CCORE or
CCORE Module). This document may be freely reproduced and distributed as
published.

The FIPS 140-2 standard, and information on the CMVP, can be found at
http://csrc.nist.gov/cryptval.

1.2 Security Level Summary

FIPS 140-2 Section Level
Cryptographic Module Specification 1
Cryptographic Module Ports and Interfaces 1
Roles, Services and Authentication 1
Finite State Model 1
Physical Security N/A
Operational Environment 1
Cryptographic Key Management 1
Electromagnetic Interference/Electromagnetic Compatibility 1
Self-tests 1
Design Assurance 1
Mitigation of Other Attacks N/A

Table 1 Security Level Summary

2 CCORE MODULE SPECIFICATION

The CCORE module is a Software Cryptographic Module. For the purposes of FIPS
140-2 validation, the CCORE module is delivered as a discrete unit of binary object
code. The binary object code is generated from a specific set and revision level of C
language source files. These platform-portable source files are compiled to create
this object code for execution on a general purpose computer for use by an
application to provide cryptographic services. The purpose of the CCORE module is
to provide, through an API library, cryptographic service support for Cellcrypt’s
secure Voice-Over-IP products. The major cryptographic services provided by the
module are:

• Initialization of Critical Security Parameters for peer to peer communication
• Key establishment between two peers
• Encryption of a maximum 4KB block of user data at a time
• Decryption of a maximum 4KB block of user data at a time

The CCORE module is distributed in its binary object code form as part of Cellcrypt’s
software package applications. Since the CCORE module is a Software

CCORE Module Security Policy 2

Cryptographic Module, it is conceptually comprised of two sub-elements: a Physical
Cryptographic Module (PCM) and the Logical Cryptographic Module (LCM). The
above services execute/operate within the PCM that contain the processor or central
processing unit (CPU) and memory devices interconnected with a system bus. For
the purposes of FIPS 140-2 level 1 validation the CCORE module can be considered
a multi-chip standalone module.

The CCORE module library implements a secure and reliable transport layer. It
contains all functions for handling encryption and decryption of data. The library is
used by the originating call handler (the initiator) and the terminating call handler (the
responder). The main services of key establishment and data encryption by an
initiator or responder instance of the user application are performed by invoking
CCORE functions.

The module establishes an encrypted tunnel and data sent through that tunnel is
processed twice. In the first pass output data is processed with 256-bit RC4
obfuscation, which is treated as plaintext manipulation for the purpose of FIPS 140-2
validation. For this 1st pass keys are established using the Elliptic Curve Diffie-
Hellman (ECDH) protocol and authentication between peers is performed with
ECDSA digital signing. The second pass is a FIPS 140-2 compliant encryption,
using 256 bit AES. For the 2nd pass, keys are established using RSA key transport
and authentication between peers is performed with RSA Digital signing. All data
output from the module is processed by both passes, so it is first obfuscated using
RC4 and then encrypted using AES.

2.1 Hardware Platform
The module was tested for FIPS 140-2 level 1 requirements on a Ubuntu Server
8.04.1 operating system running on a Pentium 4 computer platform.

2.2 Module Boundary
The logical cryptographic boundary for the CCORE module is the LCM boundary
which surrounds the discrete contiguous block of binary object code containing the
machine instructions and data (that resides on the local file system) generated from
the CCORE source code, as used by the user application. The logical cryptographic
boundary is defined in terms of an Application Programming Interface (API) which is
the logical interface to the CCORE module.

The CCORE module interfaces to the underlying modules SIPm and RIPm. SIPm
deals with the network signalling and RIPm deals with the media transport. They are
only involved in the transport of data to and from the network and so are outside of
the cryptographic boundary.

CCORE Module Security Policy 3

Figure 1 Logical Diagram

CCORE module

Cellcrypt SIPm/RIPm
modules

Cellcrypt
Client

Application

SIPm.dll

File storage

Ubuntu Server 8.04.1 OS TCP/IP stack

Component within cryptographic boundary

Component outside cryptographic boundary

Ciphertext (encrypted) data

Plaintext (unencrypted) data

Control data

RIPm.dll

CCORE.dll

Status data

Network Interface Card

Hard Disk /
System
Memory

CPU /
System

Bus

Software components
execute within the
physical boundary

components as
mapped here

CCORE Module Security Policy 4

Figure 2 Physical Cryptographic Module

2.3 FIPS-Approved Mode of Operation
The module is designed to only work in an Approved FIPS mode of operation. There
is no special configuration required to operate in a FIPS-Approved mode. The
services of the module, when used by an application, provide FIPS 140-2 level 1
compliant cryptographic operations.

3 PORTS AND INTERFACES

The following table describes the ports and interfaces to the CCORE Module.

FIPS Logical
Input/Output

Logical Interface Physical Entry/Exit Port

Data input API function and the context passed
with it contain the data input to the
module. The data input will be
provided by either the network
protocol stack for data from the
network port or from system memory
for data provided by a user
application.

System Bus towards
Network Port / System
memory

CPU

Networking

RAM

Hard Disk

I/O

Power Supply

Monitor

Keyboard

Mouse

Component within cryptographic boundary

System Bus within cryptographic boundary

Ccore Module

CCORE Module Security Policy 5

FIPS Logical
Input/Output

Logical Interface Physical Entry/Exit Port

Data output API function and the context passed
with it contain the data output from
the module. The data output from the
module will either be output through
the network protocol stack for data to
be sent from a network port or output
to system memory for data to be
provided to a user application.

System Bus from Network
Port / System memory

Control input API function call provides the control
data input to the module.

System memory

Status output Return codes (both error and non-
error) from called functions.

System memory

Table 2 Ports and Interfaces

The operating system software is responsible for keeping logical interfaces that share
the same physical port separate. For example, encrypted data sent to and received
from the network will pass through the network port of the general purpose computer.
Received and sent data from/to the network is processed by the network protocol
stack software of the operating system and delivered to or read from the CCORE
module as a data structure.

4 ROLES, SERVICES AND AUTHENTICATION

The cryptographic services are provided through the API of the module. There are
two roles supported with the module. They are the User role and Crypto Officer role.
Roles are implicitly assumed by an application that uses the services implemented in
the module. The application switches roles implicitly depending on which API call is
issued by the application.

The Crypto Officer role is implicitly assumed when the application requests
initialization of the module or zeroization of the data in the module. Self tests are
performed as a part of the initialization.

After the module has been initialized, the User role is implicitly assumed when the
application requests services implemented by the module that makes use of services
defined through the module’s API, except initialization, executing self-tests, and
zeroization.

Note that only a single application may access the module services at any one time.

The services provided by the module are listed in the following table.

CCORE Module Security Policy 6

Role Service API/Function call
Crypto Officer Initialization / Perform self-tests CC_new()
Crypto Officer Zeroization of CSPs (session

keys, RNG seed) and all session
data2

CC_deinit()

User Create new peer CC_newpeer()
User Show Status CC_FIPS_geterror()
User Zeroization of peer session keys

and data
CC_deinitpeer()

User Key establishment (initiator) with
peer to peer authentication using
digital signing

CC_encode()

User Key establishment (responder)
with peer to peer authentication
using digital signing

CC_decode()

User Encryption of a maximum of 4KB
block of user data at a time

CC_encode()

User Decryption of a maximum of 4KB
block of user data at a time

CC_decode()

User Process timeouts CC_tick()
Table 3 Services Authorized for Roles

Service Cryptographic Key/CSP Type of Access

to Key/CSP
Initialization / Perform Self-
tests

RNG seed file, Asymmetric
private keys (RSA and ECDSA)

W

Zeroization of CSPs (session
keys, RNG seed) and all
session data3

Asymmetric public and private
keys (RSA and ECDH),
Asymmetric public key
(ECDSA), Symmetric keys (AES
and RC4)

W

Table 4 Access Rights within Services for Crypto Officer

2 Note: The module’s RSA key file must be manually deleted. See Section 10.1, Crypto
Officer Guidance.
3 Note: The module’s RSA key file must be manually deleted. See Section 10.1, Crypto
Officer Guidance.

CCORE Module Security Policy 7

Service Cryptographic Key/CSP Type of Access
to Key/CSP

Create new peer None N/A
Show Status None N/A
Zeroization of peer session
keys and data

Asymmetric public keys (RSA
and ECDH), Asymmetric public
key (ECDSA), Symmetric keys
(AES and RC4)

W

RNG seed file R
Asymmetric public and private
keys (RSA, ECDH and ECDSA)

R, W, E
Key establishment with peer
to peer authentication using
digital signing

Symmetric keys (AES and RC4) R, W
Encryption/Decryption (2nd
pass)

Symmetric key (AES) E

Obfuscation/De-obfuscation
(1st pass)

Symmetric key (RC4) E

Process timeouts None N/A

Table 5 Access Rights within Services for User

Note that the Obfuscation/De-obfuscation as used for the 1st pass is regarded as
manipulation of plaintext user data for FIPS 140-2 level 1 validation purposes.

While authentication of peers for the creation of the encrypted tunnel is provided,
authentication of User Role or Crypto Officer Role, or of operators using the
application which assumes those roles, is not provided by the CCORE module. It is
the responsibility of the operator of the general purpose computer that is running the
user application, or the application itself, that uses the services of the module to
provide a secure environment in terms of restricting non-authorized use.

5 PHYSICAL SECURITY

This section is not applicable, as physical security is not required for software
modules.

6 OPERATIONAL ENVIRONMENT

The module was tested using the Ubuntu operating system on a Pentium 4 platform.
In accordance with IG4 Section G.5, the module will remain compliant with the FIPS
140-2 validation when operating on the following operating systems provided that the
general purpose computer (GPC) uses the specified single user operating
system/mode specified on the validation certificate, or another compatible single user
operating system:

• Red Hat
• Debian
• Gentoo
• CentOS
• Fedora
• Gnu
• Suse

4 Implementation Guidance for FIPS PUB 140-2 and the Cryptographic Module Validation
Program.

CCORE Module Security Policy 8

During operation, the keys, seed values and other CSPs are used in the process
space of the CCORE module. The operating system uses its inherent memory
management mechanisms to ensure that other processes do not access the process
space used by the module.

Outside of operation the module stores a seed file and keys on the local file system.
It is the responsibility of the operator of the general purpose computer that is running
the user application that uses the services of the module to provide a secure
environment in terms of protecting this data.

7 CRYPTOGRAPHIC KEY MANAGEMENT

Other than a seed file that the application must provide, all Cryptographic Keys and
Critical Security Parameters are internally managed by the module, i.e. they cannot
be input or output to/from the module.

The module manages a tunnel with two processing passes. The first pass obfuscates
data using 256-bit RC4. Keys are established using the Elliptic Curve Diffie-Hellman
(ECDH) protocol. Authentication between peers is performed with ECDSA digital
signing.

The second pass encrypts data using 256-bit AES encryption. Keys are established
using RSA key transport. Authentication between peers is performed with RSA digital
signing.

7.1 FIPS Approved Algorithms

Algorithm
Type

Algorithm Standard Use FIPS Certificate #

Symmetric
Key

AES CTR Mode
(256 bits)

FIPS 197 Encrypt/Decrypt
user tunnel
traffic

Cert #1089

Hashing SHA-384 FIPS 180-3 Hashing Cert #1022
Hashing SHA-512 FIPS 180-3 Hashing,

key derivation
Cert #1022

HMAC HMAC (SHA-
512)

FIPS 198-1 Software
integrity check

Cert #612

RNG RNG (ANSI
X9.31)

ANSI X9.31 Key generation Cert #611

Asymmetric
Key

RSA RSASSA-
PKCS1_V1_5

Signing,
Verification

Cert #514

Table 6 FIPS Approved Algorithms

CCORE Module Security Policy 9

7.2 FIPS Allowed Algorithms

Algorithm
Type

Algorithm Standard Use FIPS Certificate #

Asymmetric
Key

RSA (key wrapping; key
establishment
methodology provides 112
bits of encryption strength)

N/A Session key
establishment

N/A

Table 7 FIPS Allowed Algorithms

7.3 FIPS Non-Approved and Other Algorithms

Algorithm Type Algorithm Use Notes
Symmetric Key RC4 (256 bits) Obfuscate/De-

obfuscate user
tunnel traffic

RC4 is used for the 1st pass
which is regarded as
manipulation of plaintext
user data for FIPS 140-2
level 1 validation purposes.

Hashing MD5 Hashing, Key
generation

MD5 is used for the 1st pass
which is regarded as
manipulation of plaintext
user data for FIPS 140-2
level 1 validation purposes.

Key Agreement Elliptic Curve Diffie-
Hellman (ECDH) (key
agreement; key
establishment
methodology provides
112 bits of encryption
strength)

Session key
agreement

The Elliptic Curve Diffie-
Hellman (ECDH) algorithm is
a non-compliant
implementation.

Asymmetric Key Elliptic Curve DSA Signing,
verification

The ECDSA algorithm is a
non-compliant
implementation.

Table 8 FIPS Non-Approved and Other Algorithms

7.4 Cryptographic Keys and Critical Security Parameters

Cryptographic Key/CSP Storage Use
ECDSA Public Key RAM Verification by peer
ECDSA Private Key Non-volatile memory Signing
ECDH Public Key RAM Session key agreement

(RC4)
ECDH Private Key RAM Session key agreement

(RC4)
RSA Public Key (2048
bits)

RAM (see note 1) Session key establishment
(AES), verification by peer

RSA Private Key Non-volatile memory Session key establishment
(AES), signing

Integrity Check HMAC Key Non-volatile memory Software integrity check

CCORE Module Security Policy 10

(160 bits)
AES Session Key (256
bits)

RAM Encrypt/Decrypt FIPS
tunnel traffic

RC4 Session Key (256
bits)

RAM Obfuscate/De-obfuscate
user tunnel traffic

RNG Seed Non-volatile memory Seed used for RNG

Table 9 Cryptographic Keys and Critical Security Parameters

The RSA Public key and ECDSA Public key of any peer that the module
communicates with are stored in non-volatile memory. These keys are used to verify
the signatures in the 2nd and 1st passes respectively.

8 SELF TESTS

The CCORE Module performs self tests at initialization. The tests are as follows:

8.1 Power-up Self-Tests
The following algorithm tests are performed at power-up of the CCORE module. Note
that KAT tests are Known Answer Tests.

Algorithm Test
AES CTR Mode
(256 bits)

KAT for encryption only

RNG/PRGN (ANSI
X9.31)

ANSI x9.31 KAT

RSA (digital
signature)

KAT for digital signature generation and verification

RSA (encryption) KAT for encryption and decryption
HMAC (SHA-512) Integrity Test (no separate KAT required – IG Section 9.3)
SHA-512 No separate KAT required – IG Section 9.3
SHA-384 No separate KAT required – IG Section 9.2

Table 10 Power-Up Self Tests

In addition to algorithm tests, HMAC (SHA-512) is used to perform a software
integrity test at power up.

8.2 Conditional Self-Tests
The following conditional self tests are provided.

Algorithm Test
RSA key
generation

Pairwise consistency test verifying that the key pair
is correct for encryption/decryption and for
signature/verification.

RNG (X9.31) Check each 4 byte chunk to verify it is different than
the previous 4 byte chunk and discard the first 4
byte chunk from the seed value.

Table 11 Conditional Self Tests

CCORE Module Security Policy 11

9 MITIGATION OF OTHER ATTACKS

This is not applicable. The module does not mitigate against other attacks.

10 OPERATIONAL GUIDANCE

10.1 Crypto Officer Guidance
The Crypto Officer role initializes the module. This role is assumed by the application
that uses the module on the operating system of the general purpose computer. The
interface to the module for the application is through the logical interface of the
CCORE API library.

The following file needs to be created by the application and stored in the base
directory that is specified by the function CC_new when it is invoked by the
application. The file contents are used as a seed (256 bytes) for the RNG used by
CCORE.

• cf_seed.dat which stores the RNG seed

Before initialization the application needs to:

• Create a session context structure
• Set the Maximum Transmission Unit (MTU) for the network

(CC_SET_CTX_MTU) and the MTU for the audio transmission
(CC_SET_AUDIO_MTU)

To fulfil the role at initialization the application needs to invoke the CC_new function
of the CCORE API library. This function initializes the following security related
information:

• Private RSA key (stored in file referenced through header definition
CC_KEY_NAME)

• Private Elliptic Curve Digital Signature Algorithm key (stored in file referenced
through header definition CC_ECDSA_KEY_NAME)

Both during and outside of operation these files are stored on the local file system. It
is the responsibility of the operator of the general purpose computer that is running
the user application that uses the services of the module to provide a secure
environment in terms of protecting these files.

The CC_new function additionally performs self tests. See the self test matrices in
Section 8 for details. If a self test fails then the module will report an error and the
module will zeroize all context data including all keys and CSPs stored in
RAM/volatile memory. It is the responsibility of the operator of the general purpose
computer that is running the user application, or the application itself, to decide what
to do next.

Zeroization of keys and CSPs should be performed when the module is no longer
required to operate. To fulfil this, the Crypto Officer role needs to invoke the
CC_deinit function of the CCORE API library to zeroize the keys from memory.

CCORE Module Security Policy 12

Additionally the content of the files stored on the local file system need to be zeroized
and then deleted.

Authentication of the operator in the Crypto Officer role is not provided. It is the
responsibility of the operator of the general purpose computer that is running the user
application, or the application itself, that uses the services of the module to provide a
secure environment in terms of restricting non-authorized use.

10.2 User Guidance
The User role is implicitly assumed by an application that uses the services
implemented in the module and is executing on the general purpose computer that
makes use of the services defined through the module’s API. The interface to the
module for the User application is through the logical interface of the CCORE API
library.

An operator executing an application that uses the module will be able to
communicate with another individual over a secure transport layer tunnel encrypted
using 256-bit AES where keys have been established using RSA key transport.

The User role that is assumed by the application needs to set the CCORE flag
CC_SET_INITIATOR if it is to act as the initiator.

The User role (as the initiator or responder) that is assumed by the application needs
to invoke the CC_newpeer function of the CCORE API library as the first thing that it
does in a session. This function initializes all structures to be used.

The functions CC_encode and CC_decode of the CCORE API library serve different
purposes as and when invoked by an application. Their initial invocation will result in
the execution of the CCORE Cryptographic Key Handshake Protocol.

The first invocation of the CC_decode function will initiate cryptographic key
establishment for the initiator using the CCORE Cryptographic Key Handshake
Protocol. The responder’s invocation of CC_decode function will perform the
cryptographic key establishment by responding to the initiator using the CCORE
Cryptographic Key Handshake Protocol. This is internally driven through flags and
states.

When communication is made with a peer for the first time then a directory is created
for that peer. The following files are created in the peer directory.

• rsa_pub-tmp.bin which stores the received RSA public key of the peer before
authentication of the peer

• rsa_pub.bin which stores the received RSA public key of the peer after

authentication of the peer

• ec_pub.bin which stores the received ECDSA public key of the peer.

When the User role that is assumed by the application (as the initiator or responder)
needs to send encrypted data, it invokes the CC_encode function.

When the User role that is assumed by the application (as the initiator or responder)
needs to receive encrypted data, it invokes the CC_decode function.

CCORE Module Security Policy 13

The User role that is assumed by the application must invoke the CC_tick function in
order that the CCORE module can process timeouts. This must be at least every
second.

When the User role that is assumed by the application needs to know the status of
the module it invokes the CC_FIPS_geterror function of the CCORE API library.

At the completion of a session the User role that is assumed by the application needs
to invoke the CC_deinitpeer function of the CCORE API library. The function
clears/zeroizes all data used in the session.

When an error is reported to the application, the module will zeroize all context data
including all keys and CSPs stored in RAM/volatile memory. Calls to all I/O are
blocked. Calls to CC_FIPS_geterror, CC_deinit and CC_deinitpeer are not blocked.

Authentication of the operator in the User Role is not provided. It is the responsibility
of the operator of the general purpose computer that is running the user application,
or the application itself, that uses the services of the module to provide a secure
environment in terms of restricting non-authorized use.

CCORE Module Security Policy 14

11 GLOSSARY

ACRONYM DEFINITION
AES Advanced Encryption Standard
API Application Programming Interface
CSP Critical Security Parameter
CTR Counter
DSA Digital Signature Algorithm
E Execute
ECDH Elliptic Curve Diffie-Hellman
ECDSA Elliptic Curve Digital Signature Algorithm
FIPS Federal Information Processing Standards
GPC General Purpose Computer
HMAC keyed-Hash Message Authentication Code
I/O Input/Output
KAT Known Answer Test
LCM Logical Cryptographic Module
OS Operating System
PBX Private Branch Exchange
PCM Physical Cryptographic Module
R Read
RAM Random Access Memory
RNG Random Number Generator
RIPm Cellcrypt Real Time Protocol for Mobile
SHA Secure Hash Algorithm
SIP Service Information Protocol
SIPm Cellcrypt Service Information Protocol for Mobile
W Write

