
Chapter 2

Security Policy

2.1 Scope of Document

This document presents the security policy for FIPS 140-1 validation of the CP/Q++ software layer for Model 1-class
devices in the IBM 4758 secure coprocessor family.

This “delta validation” builds on earlier work:

� theLevel 4 FIPS 140-1 validation of the IBM 4758 Model 1 coprocessor, and

� theLevel 3 FIPS 140-1 validation of the IBM 4758 Model 13 coprocessor.

31



32 June 15, 2000

2.2 Applicable Documents

The following documents may be useful.

An overview of the design goals and internal structure of the CP/Q++ software layer:

� Dyer, Perez, Smith, Lindemann. “Application Support Architecture for a High-Performance, Programmable
Secure Coprocessor.”22nd National Information Systems Security Conference.October 1999.

The main programming reference for the services discussed in this document:

� IBM 4758 PCI Cryptographic Coprocessor Custom Software Interface Reference.October 21, 1999 version.

(Note that follow-on versions of this manual exist for follow-on “Model 2” hardware, which has additional features
that do not apply here.)

The main reference for the CP/Q kernel that this module is built on:

� IBM 4758 PCI CryptographicCoprocessor CP/Q Operating System Application Programming Reference.Version
1 Driver 16.

An overview of different ways a 4758-family device may be configured:

� Smith. Verifying Type and Configuration of an IBM 4758 Device: A White Paper.IBM T.J. Watson Research
Center, February 2000.

A recent paper containing a concise overview of the FIFO structures supporting I/O and DES in the 4758 module:

� Lindemann, Smith.Improving DES Hardware Throughput for Short Operations.Research Report, IBM T.J.
Watson Research Center. Draft, May 1, 2000.



June 15, 2000 33

2.3 Cryptographic Module Overview

2.3.1 Background

The traditional notion of a cryptographic module is a black box that performs cryptographic operations.

With our IBM 4758 product family, we have been extending this concept to high-performancesecure coprocessors:
devices that can perform high-performance cryptographyas well as other sensitive computationbeyond the reach of
adversaries who may have physicalaccess to the device.

We built our device as a generic secure coprocessor platform, in order to enable external developers (as well as IBM)
to build and deploy secure coprocessor applications. Consequently, it consists of three different components:

� an application software layer (“Layer 3”), and

� a system software layer (“Layer 2”),

� both guarded by the foundational physical security package and “Miniboot” security control software.

What the module does in the field, after booting, depends on how it has been configured: what software has been
loaded into the system and application layers.

CP/Q++ In order to facilitate OEM application development, we developed theCP/Q++ package for Layer 2.
CP/Q++ runs at supervisor-privilege within the card, and offers features that simplify the development process for
user-level Layer 3 applications. These features include:

� a programming environment,

� communication with the outside world,

� secure data storage,

� cryptography,

� and (when appropriate) debugging tools.

Validation Our previous work validated the foundational platform: the hardware, guarded by Miniboot. (We note
that our Model 1 work was the world’s first FIPS 140-1 Level 4 validation.)

The purpose of this present validation is to enable a vendor who wishes to validate a 4758 application program written
over CP/Q++ to focus on the internal behavior of their application program, rather than on internal details of CP/Q++.

In short, our goal here is to dooncewhat each such OEM would otherwise need to do separately for each validation.

The Delta Module For this present validation, the cryptographic module consists of a Model 1 or Model 13 IBM
4758 device, configured with the deployment version of CP/Q++ in Layer 2.

Note that this present module can operate in validated modeonly whenthe application loaded on top of it has also
been validated.

2.3.2 Software Structure

Our CP/Q++ layer executes at supervisor privilege, and provides a programming environment and specialized hard-
ware services to the application program in Layer 3.

As the name indicates, CP/Q++ consists of: the IBM CP/Q kernel (a mature OS for industrial embedded systems),
extended with a collection ofmanagers:



34 June 15, 2000

"Secure Crypto Coprocessor"
Application Manager (SCC)

Communications
Manager (COM)

Secure Persistant
Data Manager (PPD)

Public−Key Crypto 
Manager (PKA)

DES Manager
(DES)

Random Number
Manager (RNG)

I/O hardware Persistant 
memory hardware cryptographic hardware

Layer 2: 
System Software/OS

Kernel

Layer 3:
Application

SHA Library
(SHA)

Figure 2.1 The application support architecture within Layer 2.

� theSCC Managerhandles names and associations;

� theCOM Managerhandles communications;

� theDES Managerprovides DES services;

� thePKA Managerprovides public key services and modular math services;

� thePPD Managerprovides secure data storage services; and

� theRNG Managerprovides random number services.

Each of these managers is implemented as an independent CP/Qprocess.

Additionally:

� theSHA Libraryprovides (via compile-linked library) SHA services. (This is subset of thescclib , which also
provides wrappers for applicatino code to use to call the above services.)

Figure 2.1 illustrates this architecture.

Additionaldetails of this software structure can be found in our “Application Support Architecture” paper (Section 2.2).

2.3.3 Included Algorithms

This module includes DES, SHA-1, and DSS, as well as RSA encipher/decipher and modular math primitives.

2.4 Cryptographic Module Security Level

This module is intended to be Level 3. See Table 2.1.

However, in order for this Layer 2 software to run at that level, any program loaded into Layer 3 must also have been
validated at that level.

(Note that only a few of the formal model tasks separate us from a Level 4 in the “Software Security” category, and
hence from an overall Level 4 when built on the Model 1 platform.)



June 15, 2000 35

Security Requirements Section Satisfies Levels
Cryptographic Module 1,2,3,4
Module Interfaces 3,4
Roles and Services 3,4
Finite State Machine 1,2,3,4
Physical Security 4 (if Model 1); 3 (if Model 13)
Software Security 3
Operating System Security N/A
Key Management 3,4
Cryptographic Algorithms 3,4
EMI/EMC 3,4
Self Test 1,2,3,4

Table 2.1 Module Security Level Specification. The CP/Q++ module is overall Level 3 for either the
Model 1 or Model 13 platforms.



36 June 15, 2000

2.5 Roles

As noted earlier, this module is built upon an IBM 4758 Model 1 or Model 13 secure processor platform, which itself
is a FIPS validated module. This platform’s roles consist of Officer0 through Officer3, and a space of unauthenticated
users.

This module builds on this platform by partitioning the set of users into two additional roles:

� Theexternal useraccesses module services from the host.

� The internal user, who accesses module services from inside the application Layer 3. These entities obtain
module services by formulating their requests into a program, which Officer 2 or Officer 3 then authorizes for
loading into Layer 3 in that module.

The CP/Q++ software under validation permits zero or one internal users.

As with our platform validation, Officer0 relates to the “Cryptographic Officer 0” role.



June 15, 2000 37

2.6 System Objects

We introduce some additional system objects.

Application We define anapplicationto be the set of computational resources inside the card belonging to some
external Officer 3.

Processes The system can have one or moreprocesses. A process is the the CP/Q construct representing “owner
of resources”; informally, one can think of this as an address space. The set of processes may change over time,
depending on how the application program interacts with CP/Q++.

The structure of Layer 3 designates one process within each application asFirstProc.

Tasks Each process has zero or moretasks(the CP/Q construct for “thread of execution”). Each task is owned by
exactly one process.

Agents An agentis a name, chosen at run time, that designates some specific resources.

The set of agents breaks down into two overlapping subsets:

� Process agentsare the names chosen by processes for themselves.

� Request agentsare the names chosen by a process to represent “mailboxes” to receive communication requests
from external users.

This breakdown yields three regions: an agent may be process-only, or request-only, or both.

Request A requestis a particular communication session between an external user and the internal user, through a
particular request agent which the internal user had registered.

Requests have some associated states.

� During the interval the session exists, we say that the request isopen.

� An open request initially has anunread header. Its header may then be read.

� After the session is complete, a request becomesclosed.

Request Queue A request queueis a special CP/Q object created and maintained by the system software to receive
messages from the external user.



38 June 15, 2000

2.7 Services

2.7.1 Officer Services

This module is built upon a validated IBM 4758 platform, whose services are used to configure and maintain this
module. Table 2.2 summarizes the IBM 4758 security policy in this context.

When the 4758 platform is configured as this delta-module, the 4758 officers have these responsibilities:

� Officer 0 and Officer1 must ensure that Layer 1 contains the proper Miniboot software.

� Officer 1 and Officer2 must ensure that Layer 2 contains CP/Q++.

� Officer 2 is responsible for initial loads of Program3, and SRDI-clearing reloads.

� Officer 3 is responsible for SRDI-preserving reloads of Layer3 (“Ordinary Burn 3”).

Authentication of Internal User. Since, in this delta-module, Layer 3 embodies the internal user service re-
quests, Officer2 and Officer3 take on some additional responsibilities. When one of these officers invoke the base
platform “Layer 3 load” services in the context of this delta-module, the officer must:

� authenticate that, within this program, the entity making requests as a specific Internal User is indeed that user;

� verify that the code for this Layer 3 has indeed been validated at the appropriate FIPS level;

� and, if this is an “ordinary burn” that preserves SRDI, verify that the internal user whose service requests are
embodied in the new Layer 3 is the same entity whose service requests were embodied in the current Layer 3.

2.7.2 Internal User Services

Within this Module, an Internal Useraccesses the “++” services of CP/Q++.

Table 2.3 summarizes these services.

When accessing one of these services, the internal user implicitly specifies the task and process from which the service
is being called.

The discussion of these services tries to follow the same sequence as theIBM 4758 PCI Cryptographic Coprocessor
Custom Software Interface Reference.

Signing On The internal user may register its existence:

� sccSignOn For this service, the caller provides anagentname and arequest queueoption. The named agent
must not be in the current set of active agents.

The service adds an agent with this name to the set of active agents, and links it as follows:

– The new agent is added to therequest agentsubset, and is linked to the request queue specified by the
queue option. (Depending on the option, this queue will either be a particular pre-existing queue, or a new
one created as part of the service.)

– The caller’s task is recorded as thesigner-onof this agent.

– If no process agent is currently associated with the caller’s process, then the new agent is also added to the
process agentsubset, and is associated with the caller’s process.



June 15, 2000 39

Requests Services permit the internal user to handle communication sessions (requests) between an external user
and a request agent.

These requests work as follows:

� the external useropensa requestR to a request agent. This request consists of arequest headerand specifica-
tions fordata buffers, each of which may beto-hostor to-card.

(Note that the product documentation uses the terms “input” and “output” for these buffers, butfrom the per-
spective of the host;from the module’s perspective, the terms are backwards.)

� When the internal user receives the request, these two parties may exchange data through these buffers.

� When the requestR is complete, the internal userclosesthe request.

An external user may open more than one request to the same agent at the same time; however, each data exchange
must occur within the context of one exactly one request.

The internal user’s communications are supported via the following services:

� sccGetNextHeader This service enables the internal user to read the next open request for any one of a
specific set of request agents.

The caller specifies a request queue and a timeout option.

The service then provides the caller with the first request header on that queue (and removes it from the queue).
If the queue remains empty throughout the timeout preference, an error will be returned.

� sccGetBufferData This service permits the internal user to read a “to-card” buffer that is part of a specific
open requestR.

� sccPutBufferData This service permits the internal user to write a “to-host” buffer that is part of a specific
open requestR.

� sccEndRequest This service permits the internal user to close a specific open requestR.

DES Services DES services are provided by the DES Manager.

� sccDES8bytes This service permits the internal user to perform DES on one 8-byte block.

� sccDES This service permits the internal user to perform DES on an arbitrary length of data.

� sccDES3Key This service permits the internal user to perform three successive DES operations on one 8-byte
block.

� sccEDE3 3DESThis service permits the internal user to perform inner-CBC 3DES on an arbitrary length of
data.

� sccTransformCDMFKey This service transforms an arbitrary DES key into a CDMF key (whose effective
length is only 40 bits).

Hashing Services In the 4758 Model 1, hashing services are provided by library code which developers link in at
build-time.

� sccSHA1 performs SHA-1 hashing for the internal user.

(In Model 2, these services are provided by hardware, via an API provided by CP/Q++ for Model 2.)



40 June 15, 2000

Public Key Services Public Key services are provided by the PKA Manager.

� sccRSAKeyGenerate This service generates an RSA keypair for the internal user. The X931 option was
designed to be ANSI X9.31 compliant.

� sccRSA This service performs basic RSA operations for the internal user. (Note that these operations are
not sign/verify, but basic encipher/decipher operations. These basic operations are outside the scope of the
ANSI X9.31 standard by themselves; hoewever, an application program can use them to build an ANSI X9.31-
compliant RSA implementation.)

� sccComputeBlindingValues This service generates blindingvalues, for the internal user to use insccRSA
to ensure that operation time leaks no private information. (This service is unnecessary for our Model-2 hard-
ware, where RSA hardware itself resists such timing attacks.)

� sccDSAKeyGenerate This service generates a DSA keypair for the internal user.

� sccDSA This service performs a DSA operation for the internal user.

� sccModMath This service provides basic modular math services (which, for example, the application pro-
grammer might use to implement elliptic curve cryptosystems).

Random Number Generation Services Random number services are provided by the RNG Manager.

� sccGetRandomNumber This service provides the internal user with 64-bits of random data from the internal
hardware random number generator.

Persistent Memory Services Secure Persistent Memory services are provided by the PPD Manager.

These services permit the internal user to create, read, and write data items in the device’s nonvolatile storage: FLASH
and BBRAM.

Names for these items are chosen by the caller who creates them, and are unique for all callers linked to the same
process agent. (That is, the space of PPD items can be thought of as a file system, with a separate directory foreach
process agent.)

This means that a caller’s process must be associated with a process agent in order to actually use PPD services. This
association is established in one of two ways:

� Currently, within an application, the process designated asFirstProc is automatically associated with a default
FirstProcprocess-only agent.

� Any other process becomes associated with a PPD Directory via an explicitsccSignOn .

The security of these items depends on the underlying storage medium:

� BBRAM vanishes upon tamper, and is directly suitable for sensitive data.

� FLASH contents may be visible to an adversary who physically opens the device (since the device may not
have the time or power to erase FLASH upon detection of tamper). Consequently, sensitive data should be first
encrypted before being stored in FLASH, with the encryption key being stored in BBRAM. (ThesccSavePPD
service includes options to transparently encrypt with DES or TDES.)

Where failure might otherwise leave PPD in an unknown state, our services ensureatomicityof access, with one
exception—we also provideoneservice that allows non-atomic read/writeaccess toBBRAM storage, for applications
that require improved performance.

These are the PPD services:



June 15, 2000 41

� sccQueryPPDSpace This service reports the amount of free space that CP/Q++ has left for PPD storage
in FLASH and/or BBRAM. (This value may change with subsequent PPD requests, and with internal PPD
activities, such as garbage collection.)

� sccSavePPD This service enables the caller to save a PPD item with a specified name in a specified medium
(FLASH or BBRAM). If an item with this name already exists in the PPD directory associated with the caller’s
process agent, then the item is replaced; otherwise, the item is created.

This operation is atomic.

� sccCreate4UpdatePPD This service enables the caller to allocate a BBRAM region for a a PPD item with
a specified name, and optional data with which to populate this space. (If the data is not explicitly provided, the
region will be populated with zeros.)

If an item with this name already exists in the PPD directory associated with the caller’s proecss agent, then that
item is deleted and this new item is created.

This operation is atomic.

� sccUpdatePPD This service enables the caller to update the portion of the BBRAM region associated with a
pre-existing PPD item (in the PPD directory associated with the caller’s process agent).

This operation isnot atomic. (If the internal user desired atomicity of BBRAM update, he should use the
sccSavePPD service above.) However, failures of this non-atomic operation lead to a mingling of old data,
new data, and indeterminate bytes. In particular, data fromanotherPPD Item is not garbage-collected into space
here.

� sccGetPPD This service enables the caller to retrieve a PPD item with a specified name from the PPD directory
associated with the caller’s process agent.

� sccGetPPDDir This service enables the caller to obtain a list of names of PPD items currently in the PPD
directory associated with the caller’s process agent.

� sccGetPPDLen This service enables the caller to obtain the length of a particular PPD item in the PPD direc-
tory associated with the caller’s process agent.

� sccDeletePPD This service enables the caller to delete a particular PPD item from the PPD directory associ-
ated with the caller’s process agent.

This operation is atomic.

� sccDeleteAllPPD This service enables the caller to deleteall PPD items from the PPD directory associated
with the caller’s process agent.

This operation is atomic (for the entire set).

Configuration Services CP/Q++ provides a generic status service available to the internal user:

� sccGetConfig This service provides the caller with generic, non-sensitive status information about the de-
vice’s current configuration.

� sccSetClock This service enables the internal user to set the hardware time-of-day clock to an arbitrary
value.

� sccClearILatch The device provides an external input that can be connected to an external sensor, such as
a cover switch on the host cabinet. Triggering of this input sets an internal “intrusion” latch This service enables
the caller to clear that latch.

Note that this “intrusion latch” only records whether an external signal has occurred. This latch is provided
solely as a courtesy for certain users, anddoes not trigger zeroization. Rather, the physical security and ze-
roization of the device, as documented in the earlier validation, relies on internal sensors independent of this
signal.



42 June 15, 2000

� sccClearLowBatt The device has an internal sensor that monitors battery voltage and sets a latch when
the battery drops low enough to indicate an urgent need to be replaced, but high enough so the device and its
tamper-response circuitry is still functional. (Should the battery drop too low, the tamper-response circuitry will
fire and zeroize the device.)

This service enables the caller to clear this latch.

2.7.3 External User Services

The CP/Q++ system offers three classes of services to the external user.

Request Services One class are standard calls available to host-side applications.

� sccRequest An external user can enqueue a request header for a specific agentG.

If G is currently an active request agent, then the request becomes open and its header is placed on the request
queue to whichG is linked. Otherwise, the service fails.

Device Driver Services The second class of services are typically used by the host-side device driver, transpar-
ently to the external user.

� reset This service causes the entire device to undergo a hardware and software reset. As a side-effect, this
closes all open requests.

� ABORTREQUESTThis service causes an abnormal termination of a currently open request. (The card-side
internal user which was participating in this request will notice the abort via an error code the next time it asks
for a service pertaining to that request.)

Status Services The third class of services provides status information.

� sccGetConfig , issued externally, returns ansccAdapterInfo t , like the internal version.

� sccQueryAgent permits the external user to determine whether or not a specified agent is currently signed
on.

2.8 Authentication

Officer 0, Officer 1, Officer 2, and Officer 3 are authenticated by Miniboot; see the Miniboot documentation for details.

The internal users are authenticated (by identity) by the officer (Officer 2 or Officer 3) who authorizes the program
load for Program 3.

The external user has no authentication (within this module).

2.9 Security Rules

CP/Q++ is not intended to protect one application-level process from another one.

The Layer 3 program shall comply with these rules:

� The internal user will access the CP/Q++ services via the official library calls, rather than trying to send messages
directly to the appropriate managers.



June 15, 2000 43

� When the internal user supplies request-ids as a parameter to services, he shall have earlier obtained these ids
from a request header. (However, the request header may have been obtained by a call from a different task from
the one calling the request service.)

� It may be possible in some circumstances for a malicious task to forge a request header and add it to a request
queue, or to forge a service response message for some other task who has called that service asynchronously.

The Layer 3 program will not do that.

2.10 Module Configuration for FIPS 140-1 Compliance

The Layer 3 program is FIPS-validated, and executed only in a mode compliant with its validation.

The officers use Miniboot in a FIPS-compliant mode to configure the card.

2.11 Security Relevant Data Items

2.11.1 Items

For this delta-module, the SRDI consists of:

� The PPD items that the internal user stores in BBRAM

(Modules that add an OEM application to this module will likely have more complex SRDI scenarios.)

2.11.2 Modes of Access

PPD items may be accessed in the following modes:

� update-in-place BBRAM items may beallocated

� items may beread

� items may beatomically written

� update-in-place BBRAM items may benon-atomically written

� items may bedeleted

� items may belisted

� items may besized

� items may bezeroized

2.11.3 Roles vs. Services vs. SRDI vs. Modes of Access

Officer Services As documented in the previous validation, the following actions willzeroizeall the PPD items:

� device hardware detecting a tamper event

� Miniboot detecting a hardware or software malfunction rendering Layer 3 unsafe to execute.

� A code-loading officer doing an initial installation of the Layer 3 program.

� A code-loading officer undertaking a change to the execution environment of Layer 3 for which the the Layer 3
officer did not indicate trust.



44 June 15, 2000

Internal User Services Table 2.3 presents how the internal user services access SRDI.

External User Services Table 2.4 presents how the external user services access SRDI.



June 15, 2000 45

Role

Service
Officer 0 Officer 1 Officer 2 Officer 3

External
User

Using the device:

Query: SKA Cert

Query: Status

Query: Signed Health

Query: Certlist

Continue to MB1

Continue to CP/Q++

Factory Manufacturing:

IBM Burn

IBM Initialize

Factory Repair:

Revive

Emergency Burn 1

Field Certify

Refresh SKA

Re-Certify

Update Miniboot 1:

Ordinary Burn 1

Install CP/Q++:

Establish Officer 2

Emergency Burn 2

Update CP/Q++:

Ordinary Burn 2

Surrender Officer 2

Install Program 3:

Establish Officer 3

Emergency Burn 3

Update Program 3:

Ordinary Burn 3

Surrender Officer 3
YES

YES

YES

YES

YES

YES

YES

YES

YES

(No access to pre-initialized device)

Table 2.2 4758/Miniboot Officer Security Policy, when configured as this delta-module



46 June 15, 2000

Service SRDI Access

sccSignOn N/A

sccGetNextHeader N/A

sccGetBufferData N/A

sccPutBufferData N/A

sccEndRequest N/A

sccDES8bytes N/A

sccDES N/A

sccDES3Key N/A

sccEDE3 3DES N/A

sccTransformCDMFKey N/A

sccSHA1 N/A

sccRSAKeyGenerate N/A

sccModMath N/A

sccRSA N/A

sccComputeBlindingValues N/A

sccDSAKeyGenerate N/A

sccDSA N/A

sccGetRandomNumber N/A

sccQueryPPDSpace N/A

sccSavePPD Item getsatomically writtento specified value.

sccCreate4UpdatePPD Item getsallocatedandatomically writtento zeros.

sccUpdatePPD Item getsnon-atomically updated

sccGetPPD Item getsread

sccGetPPDDir All items getlisted

sccGetPPDLen Item getssized

sccDeletePPD Item getsdeleted

sccDeleteAllPPD All items getdeleted

sccGetConfig N/A

sccSetClock N/A

sccClearILatch N/A

sccClearLowBatt N/A

Table 2.3 Internal User service/SRDI access policy.

Service SRDI Access

sccRequest N/A

ABORTREQUEST N/A

reset N/A

sccGetConfig N/A

sccQueryAgent N/A

Table 2.4 External User service/SRDI access policy.


