FIPS 140-2 Validation Certificate The National Institute of Standards and Technology of the United States of America The Communications Security Establishment of the Government of Canada Certificate No. 444 The National Institute of Standards and Technology, as the United States FIPS 140-2 Cryptographic Module Validation Authority; and the Communications Security Establishment, as the Canadian FIPS 140-2 Cryptographic Module Validation Authority; hereby validate the FIPS 140-2 testing results of the Cryptographic Module identified as: ## Model 330G2 Smart Card by Datakey, Inc. (When operated in FIPS mode) in accordance with the Derived Test Requirements for FIPS 140-2, *Security Requirements for Cryptographic Modules*. FIPS 140-2 specifies the security requirements that are to be satisfied by a cryptographic module utilized within a security system protecting *Sensitive Information* (United States) or *Designated Information* (Canada) within computer and telecommunications systems (including voice systems). Products which use the above identified cryptographic module may be labeled as complying with the requirements of FIPS 140-2 so long as the product, throughout its life cycle, continues to use the validated version of the cryptographic module as specified in this certificate. The validation report contains additional details concerning test results. No reliability test has been performed and no warranty of the products by both agencies is either expressed or implied. This certificate includes details on the scope of conformance and validation authority signatures on the reverse. FIPS 140-2 provides four increasing, qualitative levels of security: Level 1, Level 2, Level 3, and Level 4. These levels are intended to cover the wide range and potential applications and environments in which cryptographic modules may be employed. The security requirements cover eleven areas related to the secure design and implementation of a cryptographic module. The scope of conformance achieved by the cryptographic modules as tested in the product identified as: | | | ; Hardware) | | |--|--|---|--| | | Atlan Laboratories, NVLAP LAB CODE 2004 | | | | | | | | | Level 2 | Cryptographic Module Ports and Interface | es: Level 2 | | | Level 2 | Finite State Model: | Level 2 | | | Level 3 | Cryptographic Key Management: | Level 2 | | | Level 3 | Self Tests: | Level 2 | | | Level 2 | Mitigation of Other Attacks: | Level N/A | | | Level N/A | tested in the following configuration(s): | N/A | | | c Algorithms are used: | DES (Cert. #88); Triple-DES (Cert. #236); DSA/SHA
RSA (PKCS #1, vendor affirmed) | -1 (Cert. #35); | | | e following non-FIPS a | pproved algorithms: Diffie-Hellman (key agreemen | t) | | | Overall Lev | vel Achieved: 2 | | | | United States | Signed on behalf of the Governme | nt of Canada | | | 2 | Signature: | tel | | | Dated: A7 14 2004 | | Dated: | | | Chief, Computer Security Division National Institute of Standards and Technology | | Director, Information Protection Group | | | | esting accredited laboral Level 2 Level 3 Level 3 Level 2 Level N/A c Algorithms are used: ne following non-FIPS a Overall Level United States | Level 2 Cryptographic Module Ports and Interface Level 2 Finite State Model: Level 3 Cryptographic Key Management: Level 3 Self Tests: Level 2 Mitigation of Other Attacks: Level N/A tested in the following configuration(s): c Algorithms are used: DES (Cert. #88); Triple-DES (Cert. #236); DSA/SHARSA (PKCS #1, vendor affirmed) re following non-FIPS approved algorithms: Diffie-Hellman (key agreement of the Government Signature: Dated: Dated: Director, Information Protection Green and Interface of the Government | |